

### PwrPack2019

# LF-MCeP

### High Thermal Performance Module for Power Supply

### Shuji Tsuchiya IC Assembly Division SHINKO ELECTRIC INDUSTRIES CO., LTD.



## Introduction of device embedded package

- MCeP<sup>®</sup> introduction

## Requirements for power modules

## Introduction of LF-MCeP

- Heat dissipation
- Miniaturization / Modularization
- Substrate routing efficiency

## **Package Characteristics**

- PKG warpage
- MSL Result

- PKG structure road map
- Future development challenge



## Introduction of Device Embedded Package

## MCeP<sup>®</sup> : <u>Molded Core embedded Package</u>

Chip

SMT



Fine pitch flip chip interconnection w/ thin die
Smaller package size than other PoP
Flexible pad array on top substrate
Low package warpage w/ thin body
High yield, high reliability & short TAT

Mold Resin



Top Substrate

Embedded Layer

**Bottom Substrate** 

Cu Core Solder Ball

## **Features of Manufacturing Process Flow**



Die last process (MCeP<sup>®</sup>) delivers high assembly yield.

SHINKO

SHINKO ELECTRIC INDUSTRIES CO., LTD

### **Modified MCeP®**



**MCeP®** is ideal for device embedded packages.



Introduction of device embedded package
- MCeP<sup>®</sup> introduction

## **Requirements for power modules**

### Introduction of LF-MCeP

- Heat dissipation
- Miniaturization / Modularization
- Substrate routing efficiency

### Package Characteristics

- PKG warpage
- MSL Result

- PKG structure road map
- Future development challenge



### **Request to Power Supply Module PKG**





Introduction of device embedded package
- MCeP<sup>®</sup> introduction

## Requirements for power modules

## Introduction of LF-MCeP

- Heat dissipation
- Miniaturization / Modularization
- Substrate routing efficiency

### Package Characteristics

- PKG warpage
- MSL Result

- PKG structure road map
- Future development challenge



### **LF-MCeP Introduction**

## LF-MCeP : Lead Frame Molded Core embedded Package



### **LF-MCeP Advantages**

- Can use existing MCeP<sup>®</sup> assembly process
- Heat dissipation is advantageous by using LF
- Miniaturization / modularization possible
- Substrate routing efficiency
  - (can shorten routing path)
- Low package warpage





#2 : By making LF PKG Bottom, heat dissipation from the bottom of the PKG can be improved.





## Heat Dissipation Advantage (Thermal Simulation)

Analysis model



PKG size: 10 x 10 mm Chip size: 5 x 5 mm

SHINKO

LF 4L Substrate : 0.37mm JEDEC Board : 1.6mm 2L Substrate : 0.15mm

: 0.15mm

## Heat Dissipation Advantage (Thermal Simulation)

### Analysis conditions



| Solver              | FloTHERM v12.0                      |
|---------------------|-------------------------------------|
| Analysis type       | Steady state thermal fluid analysis |
| Analysis area       | 304.5x342.9x100mm                   |
| Ambient environment | 25 °C, no wind speed                |
| Radiation           | Yes                                 |
| IC Power            | Chip: 2.0W                          |

| Parts        | Thermal conductivity<br>[W/m•K] | Radiation ratio |  |
|--------------|---------------------------------|-----------------|--|
| Chip         | 150                             |                 |  |
| Solder       | 64.2                            |                 |  |
| LF           | 220                             |                 |  |
| TIM          | 30                              |                 |  |
| Mold         | 3                               | 0.9             |  |
| NCP          | 0.54                            |                 |  |
| SR           | 0.23                            | 0.9             |  |
| Core         | 0.73                            |                 |  |
| Prepreg      | 0.73                            |                 |  |
| JEDEC board  | 0.38                            | 0.9             |  |
| Air @ 25degC | 0.026                           |                 |  |



### Heat Dissipation Advantage (Thermal Simulation)

#### Analysis result 1 : θja , Chip temperature



- The chip temperature and thermal resistance θja of LF-MCeP are lower than MCeP.
- When the TIM material is applied, the chip temperature and the thermal resistance θja are further reduced.



SHINKO

## Heat Dissipation Advantage (Thermal Simulation)

: Conduction



- Most of the chip heat is dissipated from the JEDEC board.
- In the case of LF, the chip heat is transferred directly to the JEDEC board via LF.

## **Miniaturization / Modularization**

SHINKO ELECTRIC INDUSTRIES CO., LTD

SHINKO

### PKG area comparison Module PKG vs LF-MCeP

![](_page_14_Figure_2.jpeg)

Shrink of 25% is possible in the PKG area ratio

15

### **Substrate Routing Efficiency**

By placing components on the front and back of the substrate, the routing path between components can be shortened.

Conventional (2D) LF-MCeP(3D)

### Calculation results of routing path

### $\Rightarrow$ Routing path can be shortened to about 1/4

- Calculation conditions
  - •WLCSP : BGA 0.50mm Pitch
  - •SMT Size : 0603[mm]
  - •4L Substrate : t=0.37mm

![](_page_15_Picture_10.jpeg)

Introduction of device embedded package
- MCeP<sup>®</sup> introduction

## Requirements for power modules

## Introduction of LF-MCeP

- Heat dissipation
- Miniaturization / Modularization
- Substrate routing efficiency

## **Package Characteristics**

- PKG warpage
- MSL Result

- PKG structure road map
- Future development challenge

![](_page_16_Picture_14.jpeg)

### **PKG Warpage**

### Sample

- PKG size: 9.0mmSQ.
- Embedded chip and component

![](_page_17_Picture_5.jpeg)

4L Substrate Embedded Layer Lead Frame

![](_page_17_Figure_7.jpeg)

Small warpage range from room temperature to high temperature Low warpage PKG possible

![](_page_17_Picture_9.jpeg)

### **MSL Result**

### Sample

- PKG size: 9.0mmSQ.
- Embedded chip and component

![](_page_18_Picture_5.jpeg)

4L Substrate Embedded Layer Lead Frame

| MSL  | Test condition                                    | N     | Result<br>(SAT)    |
|------|---------------------------------------------------|-------|--------------------|
| MSL3 | Bake125°C24h<br>⇒30°C60%192h<br>⇒260°CMaxReflow×3 | 10pcs | 10 / 10pcs<br>PASS |

![](_page_18_Picture_8.jpeg)

Introduction of device embedded package
- MCeP<sup>®</sup> introduction

## Requirements for power modules

## Introduction of LF-MCeP

- Heat dissipation
- Miniaturization / Modularization
- Substrate routing efficiency

### Package Characteristics

- PKG warpage
- MSL Result

- PKG structure road map
- Future development challenge

![](_page_19_Picture_14.jpeg)

![](_page_20_Figure_0.jpeg)

Voltage [V]

### **PKG Structure Road Map**

### Adoption of Cu Cube

Improved thermal conductivity of upper and lower substrates.

\_ead frame (Top)

Stable connectivity and lower electrical resistance.

![](_page_20_Picture_5.jpeg)

### High thermal conductive mold resin

Substrate

Substrate

IC

Lead frame

#### MCeP adoption of LF + LF

 Improves heat dissipation from the top and bottom of the PKG

## Thermally conductive resin is used on the back of the chip

Lead frame (Bottom)

Electric current [A]

![](_page_20_Picture_11.jpeg)

Core

Mold

![](_page_20_Picture_12.jpeg)

### **Future Development challenge**

### Summary

- Use of LF can improve heat dissipation of PKG.
- Can be miniaturized and modularized by embedding components.
- The routing length can be shortened by 3D PKG structure.

### Improved heat dissipation

- Development of high thermal conductive mold resin.
- Development of high thermal conductive resin between chip and LF.

![](_page_21_Picture_9.jpeg)

# Thank you for your attention

![](_page_22_Picture_2.jpeg)