High-Performance Controllers for Emerging Converter Topologies and Low-Power High-Frequency SMPS

Aleksandar Prodić

E-mail: prodic@ece.utoronto.ca

Laboratory for Power Management and Integrated SMPS University of Toronto, E. Rogers ECE Department http://www.ele.utoronto.ca/power_management/publications.html

University of Toronto, Rogers ECE Department 1 and 1

Applications of Primary Interest, Challenges and Goals

Primary Applications: Power Management Systems of Modern Electronic Devices (Space Constrained)

- Often consist of more than 30 switch mode power supplies (SMPS) and low-drop out regulators (LDOs)
- Power processing is usually done in two stages
- § Converters process power from a fraction of watt to few hundreds of watts

Power management system of a mobile device

Low Power SMPS: Ongoing Situation & Requirements

- Passives often occupy up to 80 % of total PCB area and are a large contributor to the overall weight and cost, **often area by Cs and height/weight by Ls**
- § Bottle neck in extension of functionality and operating time
- **•** Increasing power and conversion ratio and, at the same time, smaller height ≤ 1 mm of power SMPS are required
- § Highly cost sensitive applications

 \sqrt{a}

ARBOR

SMPS in Low Power Applications – General Challenges

- Existing solutions cannot keep with requirements of emerging applications, due to increasing power consumption (driven by increasing functionality)
- § Design requirements practically ask for **larger output power and smaller passive <u>components while improving efficiency</u>**. Due to thermal (safety and cooling constrains).
- Related, voltage requirements are changing, higher step down required
- § Custom topological/control solutions for a given application might be needed to maximize efficiency and minimize the volume.
- Solutions based on novel devices and technologies, i.e. operation at higher switching frequencies
- Solutions based on novel controller design and power stage architectures *=> Focus of this talk*

Main Requirement for new solutions => Need to be more efficient and smaller at the same time

Fundamental Volume Reduction Principles for Passive Components

University of Toronto, Rogers ECE Department 6 and 100 minutes of 6

Control and Topological Solutions for C and L Reductions

■ C reduction through improvement of dynamics performances of *controllers (min. deviation control)*

■ *L* (and C) reduction through minimization topological solutions– *reduced voltage swing converter topologies*

Single Mode Minimum Deviation Controller

University of Toronto, Rogers ECE Department 8 and 8 a

Sizing of the Output Capacitor and Charge Swing

trecov

ΔVtransient

load step

 200 v/

 $0A$

 $\oint_{\mathcal{L}} I_L(t)$

 $Area = \Delta q_{transient}$

<u>out</u>

Design parameter: voltage deviation during transients => ultimate goal to reduce this deviation

iload leasurement Menu Key converter waveforms during steady state and a transient

Our ultimate goal is to minimize $\Delta V_{transient}$ – *so lets see how, in traditional design, we go there…*

 $v_{out}(t)$

 $1.52V$

30A

valley point switch off switch on c(*t*)

Area =Δ*qripple*

ΔVripple

Frequency Domain (s-Domain) Based Controller Design (Conventional Control Theory Based)

Frequency vs. Optimum-Time Control

Charge Based (Mixed-Signal) Time-Optimal Response

- Capacitor reduced but the peak current results in a larger inductor, not a favorable tradeoff.
- For indirect energy transfer converter the fastest speed does not even guarantee the minimum deviation.

ARBOR

[1] W. Burns, T. Wilson "A State-Trajectory Control Law for DC-to-DC Converters", IEEE Transactions on Aerospace and Electronic Systems, January, 1978.

University of Toronto, Rogers ECE Department 2007, 10.1.22, monthly prince in the state of Toronto, 12 [2] F. Guang, E. Meyer, Y.-F. Liu, "A New Digital Control Algorithm to Achieve Optimal Dynamic Performance in DC-to-DC Converters," Power Electronics, IEEE Transactions on, vol.22, no.4, pp.1489-1498, July 2007.

Minimum Deviation Controller

Minimum (Optimum) Deviation Dual-Mode Controller

[1] A. Radić, Z. Lukić, S.M. Ahsanuzzaman, A. Prodić, and R. de Nie, "Minimum Deviation Digital Controller IC for Dc-Dc Switch-Mode Power Supplies," IEEE Trans. on Power Electronics, Sept. 2013,Vol.28.

Minimum (Optimum) Deviation Dual-Mode Controller

converter parameters

Digital controller logic ICFTRMEX

Electronics, Sept. 2013, Vol.28. [1] A. Radić, Z. Lukić, S.M. Ahsanuzzaman, A. Prodić, and R. de Nie, "Minimum Deviation Digital Controller IC for Dc-Dc Switch-Mode Power Supplies," IEEE Trans. on Power

Experimental Results (500 kHz VRM)

Fast PID Optimum Deviation

Low peak current, minimum deviation but two control modes could present a challenge and are often not desirable

[1] A. Radić, Z. Lukić, S.M. Ahsanuzzaman, A. Prodić, and R. de Nie, "Minimum Deviation Digital Controller IC for Dc-Dc Switch-Mode Power Supplies," IEEE Trans. on Power Electronics, Sept. 2013,Vol.28.

IEEE PwrSoC 2018 Single Mode Min. Deviation Controller

Simple modification of a conventional PWM controller

Steady state operation

Only detect zero crossings of the outpt capacitor current and keeps transistor on/off for D/2 (positive zero crossing) or D'/2 (negative zero crossing) \Box Has two PWM modulators, producing D/2 and D'/2

[1] T. Moinaoau, A. Radić, and A. Prodić, "A single mode minimum deviation controller …," IEEE APEC 2018.

Single Mode Min. Deviation Controller

Fig. 1 A buck converter regulated by a single mode load tracking minimum deviation controller.

Load transient

Only detect zero crossings of the outpt capacitor current and keeps transistor on/off for $D/2$ (positive zero crossing) or $D'/2$ (negative zero crossing)

VELUT \overline{N} **ARBOR**

[1] T. Moinaoau, A. Radić, and A. Prodić, "A single mode minimum deviation controller …," IEEE APEC 2018.

Single Mode Min. Deviation Controller – Exp. Results

A 10% o 90% load step (0.5 A to 4.5 A)

Reacts on multiple transients without any mode-transition problems

Inductor Volt-Swing Reduction Based Topologies

Voltage Swing Reduction- Fundamental Principle

- Inductor volume directly proportional to the flux linkage

$$
\lambda = LI
$$

*-*l usually reduced by reducing *T* (increasing the sw. frequency) \Rightarrow penalties in efficiency (we need both smaller volume and better efficiency)

- Alternatively, l *can be reduced by minimizing voltage swing, i.e.* V_{high} - V_{low}

Voltage swing reduction principle

ARBOR

Voltage-Swing Reduction (Differential Buck Principle)

By reducing the voltage swing the inductor size (inductance value) can be drastically reduced

Two values of the switch node voltages can be set closer to the output voltage value. We don't need to have two dc references (of v_x *) at 0 and Vg.*

Voltage Swing Reduction: Switching and Conduction Losses

Side benefits (byproducts): Reduction of voltage stress of the components allowing for power processing efficiency improvements and **cost-effective** implementation with components **having a better figure of merit (FOM)**

Conduction losses: transistor on resistances and the resistance of the inductor can be lower

Indication that by reducing voltage swing we can actually gain both reduced volume and improved power processing efficiency.

Three (Multi) Level Flying Capacitor Topologies

[1] T.A. Meynard, H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters," *in Proc. IEEE PESC* '92, vol. 1. pp.397-403 July 1992.

These Buck Converter for VIGA, Telecommunications Conference, 2005. INTEED 65. Twenty Severint [2] K. Nishijima,K. Harada, T. Nakano, T. Nabeshima, and T. Sato, "Analysis of Double Step-Down Two-Phase Buck Converter for VRM," *Telecommunications Conference, 2005. INTELEC '05. Twenty-Seventh International* , pp.497,502, Sept. 2005

ARBOR

Three (Multi) Level Flying Capacitor Topologies

24 V to 1 V, 120 A, 93% efficient topology with single loop cap balancing

[1] P. Jain, A, Prodić, and A. Gerfer, "Wide-Input High Power Density Flexible Converter Topology for Dc-Dc Applications," *in Proc. IEEE Applied Power Electronics Conference (APEC)*, 2016.

[2] G Roberts, N Vukadinović, A Prodić, "A multi-level, multi-phase buck converter with shared flying capacitor for VRM applications," *in Proc. IEEE Applied Power Electronics Conference (APEC)*, 2018.

VELUT

EVO

ARBOR

Control of Hybrid Multi-Level FC Topologies

Reasons for not Using FC Converters (Sceptics Guide on Trashing FC Converters Idea)

- *Flying capacitor instability problems in:*
	- § *PWM voltage mode*
	- § *Peak current programmed mode*
	- § *Average current programmed mode*
- § *Challenges of operating at light loads*
- *Start-up and input load transient challenges [1]*
- *Different failure mechanisms compared to conventional structures*
- § *Not fully understood/explored system dynamics*
- *Pin count (pad ring) increase for IC implementation*

§ *Losses of flying capacitor esr…*

[1] M. Halamicek, T. Moiannou, N. Vukadinović, and A. Prodić "Capacitive divider based passive start-up methods for flying capacitor step-down dc-dc converter topologies," *in Proc. IEEE ECCE-Asia/IPEC*, 2018.

There are Some Good Control News as Well

- § *Further improvement of transient response performance (further reduction of the output capacitor)* \odot
- *Opening possibilities for on-line efficiency improvement* \mathcal{D}
- § *Create opportunities for new (digital) control methods to make them even smaller and/or more efficient* \odot

Potential benefits are just too good to quit on the idea and, again, the existing solutions just cannot keep on with some emerging requirements (increased conversion ratio and power ratings)

PWM Voltage Mode Flying Capacitor Balancing Challenges and Solutions

Flying Capacitor Voltage Balancing

Ideally the flying capacitor is at Vg/2, in practice, due to circuit imperfections and tolerances the value is constant but not at Vg/2.

However, problems occur for nonnegligible current ripple (Positive feedback)

Higher order FC multi-level converter

VELUT \overline{N} **ARBOR**

Flying Capacitor Voltage Balancing

For example, when $V_{f|y} < V_{in}/2$ *increase in* d_1 *can cause more charge to be taken than put in the flying cap (positive feedback), due to the ripple.*

[1] Nenad Vukadinović, Aleksandar Prodić, Brett A Miwa, Cory B Arnold, Michael W Baker, "Extended wide-load range model for multi-level Dc-Dc converters and a practical dual-mode digital controller," IEEE APEC 2016. [2] N Vukadinovic, A Prodic, BA Miwa, CB Arnold, MW Baker, "Discontinuous conduction mode of multi-level flying capacitor DC-DC converters and light-load digital controller," IEEE COMPEL 2017

Two-Mode Controller for The FC Loop

- *Two mode controller, at lighter load repeats charging or discharging state when deviation of flying cap voltage is detected and at heavier changes duty ratio.*
- *Single mode impractical due to large variations in flying cap value for heavy load*

[1] Nenad Vukadinović, Aleksandar Prodić, Brett A Miwa, Cory B Arnold, Michael W Baker, "Extended wide-load range model for multi-level Dc-Dc converters and a practical dual-mode digital controller," IEEE APEC 2016. [2] N Vukadinovic, A Prodic, BA Miwa, CB Arnold, MW Baker, "Discontinuous conduction mode of multi-level flying capacitor DC-DC converters and light-load digital controller," IEEE COMPEL 2017

University of Toronto, Rogers ECE Department 32

 \overrightarrow{FVQ}

VELUT

ARBOR

CPM Control Challenges And Solutions

Multiple Period Doubling Oscillation Regions and a Zero Ripple Region for Peak CPM

 v_{Cfly} *runaway condition worse than voltage mode control as the duty-cycle varies with a fixed peak command [1].FC goes unstable by itself.*

ARBOR

Control Challenges: 1. Peak CPM controller without slope compensation is inherently unstable for $0.25 < D < 0.5$ **and** *0.75 < D < 1.0* for three-slope converters.

2.Around $M(D) = 0.5$, there is near zero ripple, so Peak/Valley CPM, relying on ripple, cannot work directly.

[1] L Lu, SM Ahsanuzzaman, A Prodic, G Calabrese, G Frattini, M Granato, "Peak offsetting based CPM controller for multi-level flying capacitor converters IEEE APEC 2018

Other CPM Methods

Valley CPM provides FC stability [1] but does not provide inherent current *protection of main (direct energy transfer) switches*

[1] JS Rentmeister, C Schaef, BX Foo, JT Stauth, "A flying capacitor multilevel converter with sampled valleycurrent detection for multi-mode operation and capacitor voltage balancing," IEEE ECCE 2016,

[2] L. Lu, S. M. Ahsanuzzaman, A. Prodic, G. Calabrese, G. Frattini, and M. Granato. ''Digital Average CPM Conrol for Multi-level Flying Capacitor Converters ''. *IEEE COMPEL 2018*.

Peak Offsetting CPM Controller

Based on voltage difference between v_{cfly} *and Vg/2 brings positive and negative offsets to two consecutive current reference signals*

[1] L Lu, SM Ahsanuzzaman, A Prodic, G Calabrese, G Frattini, M Granato, "Peak offsetting based CPM controller for multi-level flying capacitor converters IEEE APEC 2018

[2] L. Lu, S. M. Ahsanuzzaman, A. Prodic, G. Calabrese, G. Frattini, and M. Granato. ''Digital Average CPM Conrol for Multi-level Flying Capacitor Converters ''. *IEEE COMPEL 2018*.

Experimental Results

Failure Mechanisms: Voltage Spikes at Zero Ripple Operating Points

Voltage Spikes for Zero-Ripple Operating Points

At zero ripple points (M(D)=0.5 for 3-level buck) high voltage spikes that can destroy components can be noticed.

Potential advantages of the low voltage rating transistors could be lost.

Operation For M(D) = 0.5 and Voltage Spikes

■ *Current of the FC parasitic inductance is forced to move between* $+/-$ *I causing high voltage spikes (di/dt)*

method for minimizing switching stress in low-power multi-level Dc-Dc converters," IEEE COMPEL 2015,

VELUT \sqrt{a} **ARBOR**

[1] Nenad Vukadinović, Aleksandar Prodić, Brett A Miwa, Cory B Arnold, Michael W Baker, "Skip-duty control

Elimination Through Skip-Duty & Sequencing

For M(D) required to be 0.5 "jumping" between two values resulting in 0.5 average and sequencing is applied. Sequencing needed to maintain symmetric current ripple.

Experimental Results

Comparison of the steady state operation of 3-level buck converter for $M(D) = 0.5$. a) Conventional controller (left) and b) Skip-duty controller (right). For both waveforms: Ch1. - 5 [V]/div: digital control signal of the low side M4 switch (Fig 1.), Ch2. – 5[V]/div: *V_{SW}*, switching node voltage, Ch3. – 5[V]/div: *V_{DS4}*. Drain-source voltage of the low side M4 switch (Fig 1.), Ch4. – 2[V]/div: V_{OUT} output voltage of the converter.

Some Good News: Transient Response Improvement and On-Line Efficiency Optimization

Transient Response Improvement (with Single Mode Minimum Deviation Controller)

ARBOR

For two top switches on provide faster response than that of conventional $converters (smaller)$ *For two top switches on provi*

Mutter)
pdić, G. Calabrese, M. G *D*2*Tm/*2 **⁰** *First Half* [1] L. Liu, A Prodić, G. Calabrese, M. Granato, and. G. Frattini, "Single-Mode Minimum Deviation Controller for Multi-Level Dc-Dc Converters", to be presented at IEEE APEC 2019.

University of Toronto, Rogers ECE Department **Additional Engineering Control** 44 *ev Vref Vout (*1*-D)Tm/*2 *Output*

IEEE PwrSoC 2018 On-Line Efficiency (Ripple) Optimization Through Adaptive 3-4 Level Mode Operation

Inductor current ripple of Multi-level converters

Fig. 3. Normalized inductor current ripple for the buck, 3,4 and 5 level converters.

Digital Controller

On-line change of the number of levels to minimize the ripple (losses), could be useful for wide input dc-dc and rectifiers.

 FVQ **ARBOR**

[1] N Vukadinović, A Prodić, BA Miwa, CB Arnold, MW Baker, "Ripple minimizing digital controller for flying capacitor dc-dc converters based on dynamic mode levels switching", IEEE APEC 2017.

Control-Based Increase of the Effective Number of Levels for FC Converters (further L reduction)

Depending on conditions, can be driven as a conventional 5-level converter producing 0, $V_g/4$ *,* $2V_g/4$ *,* $3V_g/4$ *, and* V_g *at the switching node and/or as a combination of a 3-level and 4-level converter producing additional two levels Vg/3 and 2Vg/3 = > we can get 7 levels from a 5-level topology*

[1] M. Halamicek, T. McRae, and A Prodić, "Asymmetric Voltage Splitting Modulation for Multi-Level FC Converters", to be presented at IEEE APEC 2019.

Control-Based Increase of the Effective Number of Levels for FC Converters (further L reduction)

(a) MS_A

(b) MS_B

Example for 5-level structure operating with 0, Vg/3, Vg/2, 2Vg/3 and Vg levels. Can obtain automatic cap balancing.

[1] M. Halamicek, T. McRae, and A Prodić, "Asymmetric Voltage Splitting Modulation for Multi-Level FC Converters", to be presented at IEEE APEC 2019.

Control-Based Increase of the Effective Number of Levels for FC Converters (further L reduction)

Fig. 6: Experimental waveforms of 5L-FC converter with conventional modulation.

Fig. 7: Experimental waveforms of 5L-FC converter with asymmetric voltage splitting modulation.

Ripple (inductor) reduction – for a 5 level about a 40% smaller inductor

[1] M. Halamicek, T. McRae, and A Prodić, "Asymmetric Voltage Splitting Modulation for Multi-Level FC Converters", to be presented at IEEE APEC 2019.

Conclusions and Future Challenges

- § *By utilizing reduced voltage and current swing principles new control and topological solutions can be found*
- Single-mode minimum deviation controller provides virtually minimum *voltage deviation resulting in the minimum size of output cap for direct energy transfer converters*
- § *FC converter topologies bring advantages of lower size, improved efficiency (at the same time) with potentially lower cost of implementation, but also bring (solvable) challenges related to their control*
- FC converters also open possibility for developing new control methods that *could significantly improve their efficiency and further reduce the size*

Thank You.

