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Applications of Primary Interest, Challenges and Goals
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Primary Applications: Power Management Systems of 
Modern Electronic Devices (Space Constrained)

Buck-boost
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§ Often consist of more than 30 switch mode power supplies (SMPS) and low-drop out 
regulators (LDOs)

§ Power processing is usually done in two stages

§ Converters process power from a fraction of watt to few hundreds of watts

Power management system of a mobile device

IEEE PwrSoC 2018
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Low Power SMPS: Ongoing Situation & Requirements
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§ Passives often occupy up to 80 % of total PCB area and are a large contributor to 
the overall weight and cost, often area by Cs and height/weight by Ls

§ Bottle neck in extension of functionality and operating time 

§ Increasing power and conversion ratio and, at the same time, smaller height < 1 mm 
of power SMPS are required

§ Highly cost sensitive applications   

Passives

IEEE PwrSoC 2018
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§ Existing solutions cannot keep with requirements of emerging applications, due to 
increasing power consumption (driven by increasing functionality) 

§ Design requirements practically ask for  larger output power  and smaller passive 
components while improving efficiency. Due to thermal (safety and cooling constrains). 

§ Related, voltage requirements are changing, higher step down required 

§ Custom topological/control solutions for a given application might be needed to 
maximize efficiency and minimize the volume.  

§ Solutions based on novel devices and technologies, i.e. operation at higher 
switching frequencies

§ Solutions based on novel controller design and power stage architectures 
=> Focus of this talk

Main Requirement for new solutions  => Need to be more 
efficient and smaller at the same time 

SMPS in Low Power Applications – General Challenges 
IEEE PwrSoC 2018
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Fundamental Volume Reduction Principles for Passive 
Components 

IEEE PwrSoC 2018
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Control and Topological Solutions for C and L Reductions

§ C reduction through improvement of  dynamics performances of 
controllers (min. deviation control)

§ L (and C) reduction through minimization topological solutions–
reduced voltage swing converter topologies

IEEE PwrSoC 2018
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Single Mode Minimum Deviation Controller
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Sizing of the Output Capacitor and Charge Swing
trecov

ΔVtransient

vout(t)

30A

iL(t)

load step

valley point
switch off 
switch on
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Area =Δqripple

ΔVripple

iload

Key converter waveforms during 
steady state and a transient

iL

iload

vout

Design parameter: voltage deviation 
during transients => ultimate goal to 
reduce this deviation

IEEE PwrSoC 2018

Our ultimate goal is to minimize DVtransient – so lets see how, in traditional 
design, we go there…
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Frequency Domain (s-Domain) Based Controller 
Design (Conventional Control Theory Based) 

Wide-bandwidth loop

Fast Controller Action

Reduced C Volume with a 
Small Output Deviation

Frequency        time

Time         deviation = size

Ultimate Goal

IEEE PwrSoC 2018
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Model valid for f<< fsw and The analysis is 
applicable for small variations around a 
steady state operating point
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Frequency vs. Optimum-Time Control

Wide-bandwidth loop

Fast Controller Action

Reduced C Volume with a 
Small Output Deviation

Frequency        time

Time         deviation = size

= Ultimate Goal

IEEE PwrSoC 2018
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Charge Based (Mixed-Signal) Time-Optimal Response
v(t)

time

time
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Qlost = Qon + Qoff
Q = CDV High peak current

§ Capacitor reduced but the peak current results in a larger inductor, not a favorable tradeoff. 
§ For indirect energy transfer converter the fastest speed does not even guarantee the 

minimum deviation. 
[1] W. Burns, T. Wilson “A State-Trajectory Control Law for DC-to-DC Converters”, IEEE Transactions on Aerospace 
and Electronic Systems, January, 1978.
[2] F. Guang, E. Meyer, Y.-F. Liu, "A New Digital Control Algorithm to Achieve Optimal Dynamic Performance 
in DC-to-DC Converters," Power Electronics, IEEE Transactions on , vol.22, no.4, pp.1489-1498, July 2007.

IEEE PwrSoC 2018
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Minimum Deviation Controller

Wide-bandwidth loop

Fast Controller Action

Reduced C Volume with a 
Small Output Deviation

Frequency        time

Time         deviation = size

= Ultimate Goal

IEEE PwrSoC 2018
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Minimum (Optimum) Deviation Dual-Mode Controller

§ No current overshoot, no need to know converter parameters, simple calculations

[1] A. Radić, Z. Lukić, S.M. Ahsanuzzaman, A. Prodić, and R. de Nie, “Minimum Deviation Digital Controller IC for Dc-Dc 
Switch-Mode Power Supplies,” IEEE Trans. on Power Electronics, Sept. 2013,Vol.28.

IEEE PwrSoC 2018
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Only needs to remember D before transient no need to know the 
converter parameters 

Minimum (Optimum) Deviation Dual-Mode Controller
IEEE PwrSoC 2018
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[1] A. Radić, Z. Lukić, S.M. Ahsanuzzaman, A. Prodić, and R. de Nie, “Minimum Deviation 
Digital Controller IC for Dc-Dc Switch-Mode Power Supplies,” IEEE Trans. on Power 
Electronics, Sept. 2013,Vol.28.

Track and hold asynchronous 
ADC with peak/valley 
detection operation
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Experimental Results (500 kHz VRM)

Inductor current

Gate drive signal

Output voltage

Fast PID Optimum Deviation

[1] A. Radić, Z. Lukić, S.M. Ahsanuzzaman, A. Prodić, and R. de Nie, “Minimum Deviation Digital Controller IC for Dc-Dc 
Switch-Mode Power Supplies,” IEEE Trans. on Power Electronics, Sept. 2013,Vol.28.

Low peak current, minimum deviation but two control modes 
could present a challenge and are often not desirable 

IEEE PwrSoC 2018
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q Only detect zero crossings of the outpt capacitor current and keeps transistor on/off for 
D/2 (positive zero crossing) or D’/2 (negative zero crossing)
q Has two PWM modulators, producing D/2 and D’/2

Single Mode Min. Deviation Controller

[1] T. Moinaoau, A. Radić,  and A. Prodić, “A single mode minimum deviation controller …,” IEEE APEC 2018.

Steady state operation

Simple modification of a conventional PWM 
controller 

IEEE PwrSoC 2018
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q Only detect zero crossings of the outpt capacitor current and keeps transistor on/off for 
D/2 (positive zero crossing) or D’/2 (negative zero crossing)

Single Mode Min. Deviation Controller

[1] T. Moinaoau, A. Radić,  and A. Prodić, “A single mode minimum deviation controller …,” IEEE APEC 2018.

Fig. 1 A buck converter regulated by a single mode load tracking minimum deviation
controller.

Load transient

IEEE PwrSoC 2018
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Single Mode Min. Deviation Controller – Exp. Results

A 10% o 90% load step (0.5 A to 4.5 A)

IEEE PwrSoC 2018

Reacts on multiple transients 
without any mode-transition 
problems
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Inductor Volt-Swing Reduction Based Topologies

IEEE PwrSoC 2018
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Voltage Swing Reduction- Fundamental Principle

- Inductor volume directly proportional 
to  the flux linkage

-l usually reduced by reducing T 
(increasing the sw. frequency) =>
penalties in efficiency  (we need both 
smaller volume and better efficiency) 

- Alternatively, l can be reduced by 
minimizing voltage swing, i.e. Vhigh-Vlow

Rest of the converter
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Voltage-Swing Reduction (Differential Buck Principle)
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By reducing the voltage swing the inductor size (inductance value)  can be 
drastically reduced
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Voltage Swing Reduction:  Switching and Conduction Losses
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Side benefits (byproducts): Reduction of voltage stress of the components allowing 
for power processing efficiency improvements and cost-effective implementation 
with components having a better figure of merit (FOM)
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Conduction losses: transistor on resistances and the resistance of the inductor can 
be lower 

Indication that by reducing voltage swing we can actually gain both 
reduced volume and improved power processing efficiency. 

IEEE PwrSoC 2018
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Three (Multi) Level Flying Capacitor Topologies
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[1] T.A. Meynard, H. Foch, “Multi-level conversion: high voltage choppers and voltage-source inverters,” in 
Proc. IEEE PESC '92, vol. 1. pp.397-403 July 1992.
[2] K. Nishijima,K. Harada, T. Nakano, T. Nabeshima, and T. Sato, "Analysis of Double Step-Down Two-
Phase Buck Converter for VRM," Telecommunications Conference, 2005. INTELEC '05. Twenty-Seventh 
International , pp.497,502, Sept. 2005

Provide voltage swing reduction 
and lower braking voltage 
through utilization of a flying 
capacitor, which value is kept at 
Vin/2

Meynard topology

4/gout VV <

Nishijima – Series Cap Buck

IEEE PwrSoC 2018

Balancing of FC needed for some 
control methods 

Naturally balanced but Q4
rated for the full input voltage
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[1] P. Jain, A, Prodić, and A. Gerfer, “Wide-Input High Power 
Density Flexible Converter Topology for Dc-Dc Applications,” in 
Proc. IEEE Applied Power Electronics Conference (APEC), 2016.

[2] G Roberts, N Vukadinović, A Prodić, “A multi-level, multi-phase 
buck converter with shared flying capacitor for VRM applications,”
in Proc. IEEE Applied Power Electronics Conference (APEC), 2018.
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Three (Multi) Level Flying Capacitor Topologies

24 V to  1 V, 120 A, 93% efficient topology
with single loop cap balancing 
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Control of Hybrid Multi-Level FC Topologies

IEEE PwrSoC 2018
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Reasons for not Using FC Converters
IEEE PwrSoC 2018

§ Flying capacitor instability problems in:

§ PWM voltage mode

§ Peak current programmed mode 

§ Average current programmed mode

§ Challenges of operating at light loads

§ Start-up and input load transient challenges [1] 

§ Different failure mechanisms compared to conventional structures 

§ Not fully understood/explored system dynamics

§ Pin count (pad ring) increase for IC implementation 

§ Losses of flying capacitor esr…  

(Sceptics Guide on Trashing FC Converters Idea)

[1] M. Halamicek, T. Moiannou, N. Vukadinović, and A. Prodić “Capacitive divider based passive start-up 
methods for flying capacitor step-down dc-dc converter topologies,” in Proc. IEEE ECCE-Asia/IPEC, 2018. 
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There are Some Good Control News as Well
IEEE PwrSoC 2018

§ Further improvement of transient response performance 
(further reduction of the output capacitor) J

§ Opening possibilities for on-line efficiency improvement J

§ Create opportunities for new (digital) control methods to make 
them even smaller and/or more efficient J

Potential benefits are just too good to quit on the idea and, again, 
the existing solutions just cannot keep on with some emerging 
requirements (increased conversion ratio and power ratings) 
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PWM Voltage Mode Flying Capacitor Balancing Challenges 
and Solutions

IEEE PwrSoC 2018
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Flying Capacitor Voltage Balancing  

Ideally the flying capacitor is at Vg/2, in 
practice, due to circuit imperfections and 
tolerances the value is constant but not at 
Vg/2.

However, problems occur for non-
negligible current ripple (Positive 
feedback)

Higher order FC multi-level converter

IEEE PwrSoC 2018
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Flying Capacitor Voltage Balancing  

For example, when Vfly<Vin/2 increase in d1 can cause more charge to be taken 
than put in the flying cap (positive feedback), due to the ripple. 

IEEE PwrSoC 2018

[1] Nenad Vukadinović, Aleksandar Prodić, Brett A Miwa, Cory B Arnold, Michael W Baker, “Extended wide-load 
range model for multi-level Dc-Dc converters and a practical dual-mode digital controller,” IEEE APEC 2016.
[2] N Vukadinovic, A Prodic, BA Miwa, CB Arnold, MW Baker, “Discontinuous conduction mode of multi-level 
flying capacitor DC-DC converters and light-load digital controller,” IEEE COMPEL 2017
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Two-Mode Controller for The FC Loop

• Two mode controller, at lighter load repeats charging or discharging state when 
deviation of  flying cap voltage is detected and at heavier changes duty ratio. 

• Single mode impractical due to large variations in flying cap value for heavy load 

IEEE PwrSoC 2018

[1] Nenad Vukadinović, Aleksandar Prodić, Brett A Miwa, Cory B Arnold, Michael W Baker, “Extended wide-load 
range model for multi-level Dc-Dc converters and a practical dual-mode digital controller,” IEEE APEC 2016.
[2] N Vukadinovic, A Prodic, BA Miwa, CB Arnold, MW Baker, “Discontinuous conduction mode of multi-level 
flying capacitor DC-DC converters and light-load digital controller,” IEEE COMPEL 2017
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CPM Control Challenges 

And Solutions

IEEE PwrSoC 2018
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Control Challenges:
1. Peak CPM controller without slope 
compensation is inherently unstable for 
0.25 < D < 0.5
and 
0.75 < D < 1.0
for  three-slope converters.

2.Around M(D) = 0.5, there is near zero 
ripple, so Peak/Valley CPM, relying on 
ripple, cannot work directly.

Multiple Period Doubling Oscillation Regions and a Zero 
Ripple Region for Peak CPM  

IEEE PwrSoC 2018

[1] L Lu, SM Ahsanuzzaman, A Prodic, G Calabrese, G Frattini, M Granato, “Peak offsetting based CPM 
controller for multi-level flying capacitor converters IEEE APEC 2018

vCfly runaway condition worse than voltage mode control as the duty-cycle varies 
with a fixed peak command [1].FC goes unstable by itself. 
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CPM Type/ FC Oscillations Stable Duty-Cycle Operating Range

Peak CPM/ Yes 0 < D < 0.25 
0.5 < D < 0.75

Valley CPM/ No 0.25 < D < 0.5
0.75 < D < 1.00

Average CPM/ Yes 0 < D < 1.00

Other CPM Methods

Valley CPM provides FC stability [1] but does not provide inherent current 
protection of main (direct energy transfer) switches 

IEEE PwrSoC 2018

[1] JS Rentmeister, C Schaef, BX Foo, JT Stauth, “A flying capacitor multilevel converter with sampled valley-
current detection for multi-mode operation and capacitor voltage balancing,” IEEE ECCE 2016,

[2] L. Lu, S. M. Ahsanuzzaman, A. Prodic, G. Calabrese, G. Frattini, and M. Granato. '‘Digital Average CPM 
Conrol for Multi-level Flying Capacitor Converters   ''. IEEE COMPEL 2018.
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Peak Offsetting CPM Controller 

Based on voltage 
difference between vcfly
and Vg/2 brings positive 
and negative offsets to 
two consecutive current 
reference signals  

IEEE PwrSoC 2018

[2] L. Lu, S. M. Ahsanuzzaman, A. Prodic, G. Calabrese, G. Frattini, and M. Granato. '‘Digital Average CPM 
Conrol for Multi-level Flying Capacitor Converters   ''. IEEE COMPEL 2018.

[1] L Lu, SM Ahsanuzzaman, A Prodic, G Calabrese, G Frattini, M Granato, “Peak offsetting based CPM 
controller for multi-level flying capacitor converters IEEE APEC 2018
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v_CFLY drifts to 
around 5.2 V

v_X shows imbalance 
behavior

Load Current Step from 1.7 A to 700 mA
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6.0V and 0V

v_CFLY still 
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under light load
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(a)

v_CFLY stabilized 
at 6V

v_X switches between 
6.0V and 0V

(b)

Experimental Results

IEEE PwrSoC 2018
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Failure Mechanisms: Voltage Spikes at Zero Ripple 
Operating Points

IEEE PwrSoC 2018
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Voltage Spikes for Zero-Ripple Operating Points

At zero ripple points (M(D)=0.5 for 3-level buck) high voltage spikes that 
can destroy components can be noticed. 

Potential advantages of the low voltage rating transistors could be lost. 

Normalized ripple as a function of M(D)

IEEE PwrSoC 2018
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Operation For M(D) = 0.5 and Voltage Spikes

§ Current of the FC parasitic inductance is forced to move between +/- I 
causing high voltage spikes (di/dt)

[1] Nenad Vukadinović, Aleksandar Prodić, Brett A Miwa, Cory B Arnold, Michael W Baker, “Skip-duty control 
method for minimizing switching stress in low-power multi-level Dc-Dc converters,” IEEE COMPEL 2015,

IEEE PwrSoC 2018
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Elimination Through Skip-Duty & Sequencing 

For M(D) required to be 0.5 “jumping” between two values resulting in 0.5 
average and sequencing is applied. Sequencing needed to maintain symmetric 
current ripple. 

IEEE PwrSoC 2018
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Comparison of the steady state operation of 3-level buck converter for M(D) = 0.5. a) Conventional controller (left) and b) Skip-duty controller (right). For both waveforms: Ch1. - 5 
[V]/div: digital control signal of the low side M4 switch (Fig 1.), Ch2. – 5[V]/div: VSW, switching node voltage, Ch3. – 5[V]/div: VDS4, Drain-source voltage of the low side M4 switch 
(Fig 1.), Ch4. – 2[V]/div: VOUT, output voltage of the converter. 

Experimental Results

IEEE PwrSoC 2018
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Some Good News: Transient Response Improvement and 
On-Line Efficiency Optimization

IEEE PwrSoC 2018
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Transient Response Improvement 
(with Single Mode Minimum Deviation Controller) 

For two top switches on provide faster response than that of conventional 
converters (smaller ) 

IEEE PwrSoC 2018
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[1] L. Liu, A Prodić, G. Calabrese, M. Granato,  and. G. Frattini, “Single-Mode Minimum Deviation 
Controller for Multi-Level Dc-Dc Converters”, to be presented at IEEE APEC 2019.
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On-Line Efficiency (Ripple) Optimization Through 
Adaptive 3-4 Level Mode Operation

Fig. 3. Normalized inductor current ripple for the buck, 
3,4 and 5 level converters.

On-line change of the number of levels to minimize the ripple (losses), could 
be useful for wide input dc-dc and rectifiers. 

IEEE PwrSoC 2018

[1] N Vukadinović, A Prodić, BA Miwa, CB Arnold, MW Baker, “Ripple minimizing digital controller for 
flying capacitor dc-dc converters based on dynamic mode levels switching”,
IEEE APEC 2017.
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Control-Based Increase of the Effective Number of 
Levels for FC Converters (further L reduction)
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[1] M. Halamicek, T. McRae, and A Prodić, “Asymmetric Voltage Splitting Modulation for Multi-Level FC 
Converters”, to be presented at IEEE APEC 2019.

Depending on conditions, can be driven as a conventional 5-level converter 
producing 0, Vg/4, 2Vg/4, 3Vg/4, and Vg at the switching node  and/or as a 
combination of  a 3-level and 4-level converter producing additional two 
levels Vg/3 and 2Vg/3   = > we can get 7 levels from a 5-level topology
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Control-Based Increase of the Effective Number of 
Levels for FC Converters (further L reduction)

IEEE PwrSoC 2018

[1] M. Halamicek, T. McRae, and A Prodić, “Asymmetric Voltage Splitting Modulation for Multi-Level FC 
Converters”, to be presented at IEEE APEC 2019.

Example for 5-level structure operating with 0, Vg/3, Vg/2, 2Vg/3 and Vg 
levels. Can obtain automatic cap balancing. 
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Control-Based Increase of the Effective Number of 
Levels for FC Converters (further L reduction)

IEEE PwrSoC 2018

[1] M. Halamicek, T. McRae, and A Prodić, “Asymmetric Voltage Splitting Modulation for Multi-Level FC 
Converters”, to be presented at IEEE APEC 2019.

Ripple (inductor) reduction – for a 5 level about a 40% smaller inductor
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Conclusions and Future Challenges

IEEE PwrSoC 2018

§ By utilizing reduced voltage and current swing principles new control and 
topological solutions can be found

§ Single-mode minimum deviation controller provides virtually minimum 
voltage deviation resulting in the minimum size of output cap for direct energy 
transfer converters

§ FC converter topologies bring advantages of  lower size, improved efficiency 
(at the same time) with potentially lower cost of implementation, but also 
bring (solvable) challenges related to their control

§ FC converters also open possibility for developing new control methods that 
could significantly improve their efficiency and further reduce the size
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Thank You.
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