

Potential of Hybrid Converters in Compute Platform Power Delivery

Chris Schaef Circuits Research Lab, Intel Oct 2018

Power Delivery Today - Server

•12 V to 1.8 V still dominates •48 V not yet entering mainstream

Challenges

- \triangleright Current levels approaching 1kA
- \triangleright Large VRs and passives cause high distribution losses and ac loadline
- \triangleright Bottleneck for scaling in fixed-form factor
- \triangleright Efficiency is \$ (expecting 95% for 12 to 1.8V)

Source: SUPERMICRO

Power Delivery Today – Client

• Mobile most challenging •2/3S NVDC and 20V to 0.5-1.8V

Challenges

- \triangleright Highly dynamic currents (7W TDP) SOC may require 50A for short time)
- \triangleright Transient requirements (limited decoupling)
- \triangleright Low profile (~1mm) for passives
- \triangleright Efficiency across wide load range

Source: ifixit.com

Power Conversion Directions

Increase Switching Frequency

- Can reduce size and increase bandwidth
- Better devices and passives needed to maintain efficiency (e.g. GaN)

New topologies

- Use devices and passives available today
- Shift to topologies which use switched capacitor techniques
- ■Recent work hybrid/resonant converters shows great potential

Why capacitors?

Ceramic Capacitor (0402) Murata GRM155B31A225KE95

Ferrite Inductor Coilcraft XAL6030-102ME

*includes core losses per Coilcraft calculator

Murata GRM155B31A225KE95 ([https://psearch.en.murata.com/capacitor/product/GRM155B31A225KE95%23.html](https://psearch.en.murata.com/capacitor/product/GRM155B31A225KE95#.html)) Coilcraft XAL6030-102ME [\(https://www.coilcraft.com/pdfs/xal60xx.pdf](https://www.coilcraft.com/pdfs/xal60xx.pdf))

Why not only use Capacitors?

- **□ Capacitors store energy very** effectively but energy transfer is inefficient
- □ Charge-Sharing losses grow with larger ΔV
- \Box Need large C to achieve high efficiency
- Cannot achieve high Power Density and High efficiency

Resonant Switched-Capacitor

- •Can charge/discharge capacitors through inductors
- •Resonant charge transfer eliminates chargesharing losses
- •Very small inductor enough to achieve significant improvement

Source: C. Schaef, J. Rentmeister and J. T. Stauth, "Multimode Operation of Resonant and Hybrid Switched-Capacitor Topologies", TPEL. 2018

*i*x

 ι_x

Beyond Resonant – Multimode Operation

A hybrid converter can be operated in different modes Operating mode determined by conversion ratio and frequency **QContinuous range from resonant to inductive**

Source: C. Schaef, J. Rentmeister and J. T. Stauth, "Multimode Operation of Resonant and Hybrid Switched-Capacitor Topologies", TPEL. 2018

Hybrid Topology Spectrum

Where do they fit?

Conversion Stage

- **Fixed ratio**
- High efficiency (98%+)

Regulation Stage

- **Fast transient response**
- Small footprint

Examples – Fixed Ratio

Resonant Doubler Ye (UCB), APEC 2018¹

48 to 12 V

Resonant Switched Tank

Jiang (Google), APEC 2018²

54 to 13.5 V

¹Z. Ye, Y. Lei, R.C.N. Pilawa-Podgurski "A Resonant Switched Capacitor based 4-to-1 Bus Converter Achieving 2180 W/in3 Power Density and 98.9% Peak Efficiency", APEC 2018 ² S. Jiang, C. Nan, X. Li, C. Chung and M. Yazdani, "Switched tank converters," APEC 2018

Regulation Stage Example- 4L FCML

- □ Integrated Design in 22nm FFL
	- □ 4L powerstage
	- \Box gate drivers with nested bootstrapping
- □ All passives on package

Flying Capacitor Multi-level Converter

□ Use of flying capacitors to produce additional voltage levels \Box 4-Level FCML: 0,1/3, 2/3, 1 V_{in} \Box Each Switch only block 1/3 V_{in} **□ 3x Frequency multiplication**

Main benefits

Reduced Vs stress on inductor Switching Frequency multiplication Equally rated devices Continuous conversion ratio (0 to Vin)

PWM -based Operation

- □ 3-phase PWM with 120deg phase shift
- ■Switching frequency equals 3x of PWM frequency **O** PWM duty cycle allows
- continuous control of output voltage
- Conventional duty -cycle control
- \triangleright Improved transient response due to higher switching frequency and smaller inductance

<u>inte</u>

Closed-loop transient response

OFeedback implemented with digital Type III controller □Closed-loop response to 6A load transient measured Output decoupling < 20 µF Demonstrates transient response improvement possible with hybrid approach compared to buck

Efficiency Measurements

LEfficiency measured for 5 to 1.8 and 1.2 V ■Peak efficiency of 93.8 % at 3A load Over 90% maintained up to 9A

≻High Efficiency with order -of -magnitude lower inductance

Resistance contributions

▶ Package routing significant contributor

Advances in 3D packaging technology will bring further improvement

Hybrid Regulators - Practical challenges

□ Control

- ▶ Several phase-shifted PWMs
- \triangleright Capacitor balancing loops
- **□ Gate-driving**
	- \triangleright Supply generation with nested/cascaded bootstrapping
	- \triangleright Level shifting to different domains
- **Q** Packaging
	- \triangleright On-package capacitor placement
	- \triangleright Package routing parasitics

Hybrid topologies can address many of the challenges in compute platform power delivery today

■A Range of fixed-ratio and regulated converters with great performance metrics have been demonstrated

Integrated designs most attractive to manage complexity and deliver competitive cost

Advancements in packaging critical to realize full performance potential

Thank You!