

muRata

Low profile & Multi-term Silicon Capacitors

PowerSoc 2018

Murata Integrated Passive Solutions Frédéric Nodet

- MIS introduction & PICS technology
- Trends & Roadmap Low profile & Low-ESL
- Murata Multi-term Silicon capacitors
- ESL of multi-term Silicon capacitors
- Summary

INNOVATOR IN ELECTRONICS

Murata Integrated Passive Solutions S.A.

April 2017

Murata Integrated Passive Solutions

Americas (11)

(No of companies)

Production plants R&D Centers

United States

Brazil

Mexico

Canada

Europe (14)

Finland

France

Germany

Hungary

Italy

MIS introduction PICS technology

What is Silicon capacitor?

Key Feature

High Reliability Stable Life

Si Capacitor - Product Type

Off-the-Shelf			Customized Solution	
Solder mounting	Wire-bonding / Embedded	Wire-bonding	Capacitor Array Binary Capacitor	IPD (Integrated Passive Device)
	$\langle \rangle$	\checkmark		
2 terminal	4 terminal	Vertical		Capacitor + Resistor

3D structure

2 parallelized capacitors in a MIMIM architecture to increase the capacitance value

INNOVATOR IN ELECTRONIC

Trends & Roadmap

Low profile & Low-ESL

Trends of IC package & Package capacitor

Thickness

Low profile capacitor is needed

<u>ESL</u>

Copyright © Murata Manufacturing Co., Ltd. All rights reserved. 07 November 2018 10

Advantage of Silicon Capacitor

Low profile

- Achieve low thickness (~ 50 μm)
- Higher robustness

Design many terminals on capacitor Extremely low ESL < 10pH</p>

Silicon capacitor is good answer for PKG capacitor!

Low voltage technology roadmap

UESL Capacitor Roadmap

Murata Multi-term

Silicon capacitors

Murata Multi-term MLCC capacitor

Effectiveness of Cancelling Out Inductance by Mutual Inductance

becomes lower with mutual inductance.

and lowers the ESL.

Effectiveness of Suppressing Inductance when Mounting a Multi-terminal Capacitor

The inductance for the boards also becomes lower, not only the capacitor.

Murata's Multi-term Silicon capacitors

Typical Assembly Schema - Cross section view

Murata Multi-terminal Si Cap - Top view

- Use of Mosaic Architecture → Lowest obtainable ESL and ESR by internal design
- Preserving the Low ESL and low ESR Through C4 solder bumps in flip-chip attachment → This
 offers the ultimate in low inductance since it results in many current injection points.
- This reduces the mutual inductance and minimizes the effective path length of the charging current.

(G G G

- 20-pads Silicon cap
- 2 Signals rows ٠
- 3 Ground rows •
- → 4 caps in //

ESL of Multi-terminal Silicon capacitors

ESL estimation flow

• Basic model

Strap Inductance Dimensional units: mm mils len (length) = 1 w (width) = 0.5 t (thickness) = 0.003 L(nH) Calculate Τt. L (Inductance, nH) = 0.398 $\mathbf{L} = 0.2 \cdot len \cdot \left(\ln \left(\frac{2 \cdot len}{(w+t)} \right) + \frac{0.223(w+t)}{len} + 0.5 \right)$

http://www.mantaro.com/resources/impedance-calculator.htm

ESL of 0402 & 0204 MLCC

• Typical 0402 ESL = 280pH [1]

https://product.tdk.com/info/tvcl/ecm/mlcc_commercial_general_c0402_ecm.pdf

• 0204 ESL T=0.35mm

Strap Inductance

ESL of 0402 & 0204 SiCap

Strap Inductance

Dimensional units:
mm mils

Strap Inductance

ESL of multi-term SiCap (on-going work)

Silicon Capacitors addressing market trends

- Increased density
- Low thickness

- Multi-terminals Silicon Capacitors
 - Development on-going
 - ESL computation
 - Comparison on elementary cell
 HFSS simulation + Measurements
 - Generating product [S] param

0204 500nF 40um

muRata

Thank you!

www.murata.com

