Integrated Power Management for Automotive Solid State Relay

Maurizio Granato R&D Power Manager Kilby Europe Texas Instruments

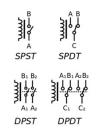
Agenda

- Intro
- Electro-Mechanical Relay and its limitations in Automotive
- Solid State Relay Application scenarios in Electric Vehicles
- Solid State Relay
 - Technical approach
 - Technological options
- Solid State Relay comparison summary

Transportation market

- Highest momentum trends
 - Autonomous operation
 - Electrification
- Impact
 - Personal transportation vehicles
 - Commercial transportation vehicles
 - Road Infrastructure
 - Fuel Infrastructure

Relays within HEV/EV & Powertrain



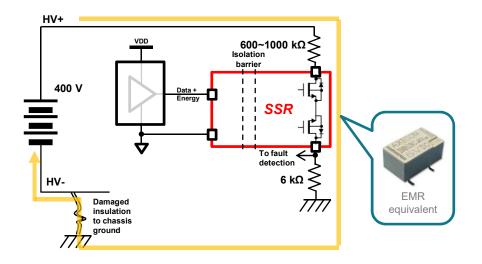
Relays and their limitations in Automotive

· Existing challenges **Electrification of Vehicle Drive Trains** - High vibration - Dusty and humid environment xEV Contactor & Relay HV-Applications - Bulky device DC New challenges or 3 - Very large number of switching operations Onboard charge 1P or AC/DC (e.g. monitoring) 3P Converter (F) - Fast response required (e.g. turn-on) 4 - Lower car acoustic noise Energy-5 New opportunity: Solid State Relay 5 s rule: Storage for fuel cell within 5 sec. System applications -<60V up to only 750Vdc (F) **Key Applications:** Further Applications: 1 Main Contactor **(4)** LV Diagnostics (2) Precharge Relay (5) Discharge Relay (3) Charger Contactor (DC) -TE Information is TE Confidential & Proprietary Do Not Reproduce or Distribute page 4 5 Image source: TE Connectivity 🖊 Texas Instruments

Benefits comparison

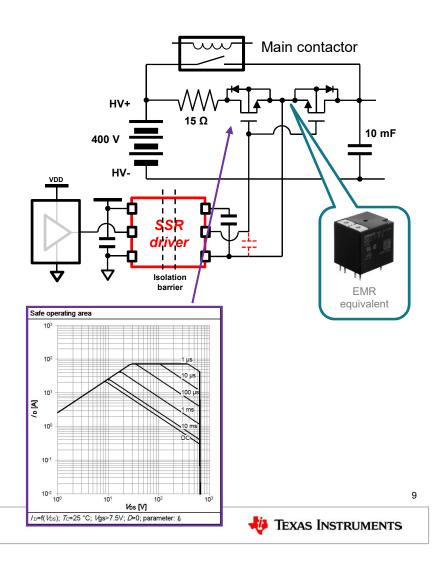
- Low cost
- Low contact resistance
- No off-state leakage (i.e. higher off resistance)
- Multiple contacts
- Can equivalently block AC or DC
- No heat sink required
- Tendency to fail "open"

- Long life (>10⁹ operations)
- No degradation of contact resistance
- Fast switching (µs range)
- Slim profile
- More flexible input interface
- No contact bouncing
- Easier load synchronization (ZVS/ZCS)
- No acoustical noise

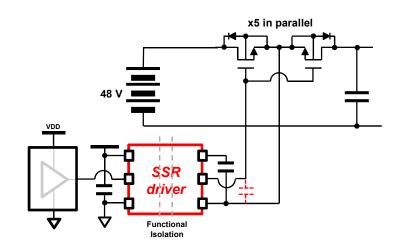


AUTOMOTIVE APPLICATION SCENARIOS

Isolation monitoring


- <u>Need</u>: verify the health of the isolation between the HV battery and the chassis ground
 - This structure can be replicated multiple times in the car, need at least 2x (HV+ and HV-)
 - Need to operate reliably for a very large number of cycles, both when car is on and off
- Solid State switches can be rated for very small currents (mA range, small Q_a)
 - Opportunity for single package integration
 - Limited input energy requirements
- Hi-pot testing between HV and chassis ground requires SSR FETs to be avalanche rugged

🖊 Texas Instruments


Pre-charge

- <u>Need</u>: pre-change the dc-link capacitor avoiding extremely large inrush currents
 - Normal operation main contactor has extremely low on-resistance being rated for 250A or more
 - Appeal of SMD components
- No need for very low on-resistance due to current limiting resistor in series
 - Allows to use cost-effective FETs or other solid state devices
 - Still requires >600Vds, >20A devices (large Q_g)
- Need for high current Solid State switches gate driver, in order to avoid reliability issues

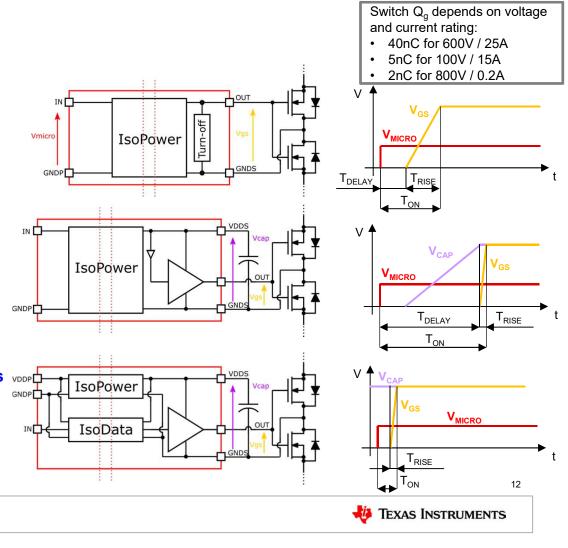
48V battery disconnect

- <u>Need</u>: compact and cost-effective solution to implement the main switch for the 48V battery
- · No need for safety isolation
- Requires very large output current, could use multiple FETs in parallel (very large overall Q_q)
- Need for high current Solid State switches gate driver, in order to avoid reliability issues

INTEGRATED POWER MANAGEMENT FOR SOLID STATE RELAY - TECHNICAL APPROACH - TECHNOLOGIES COMPARISON

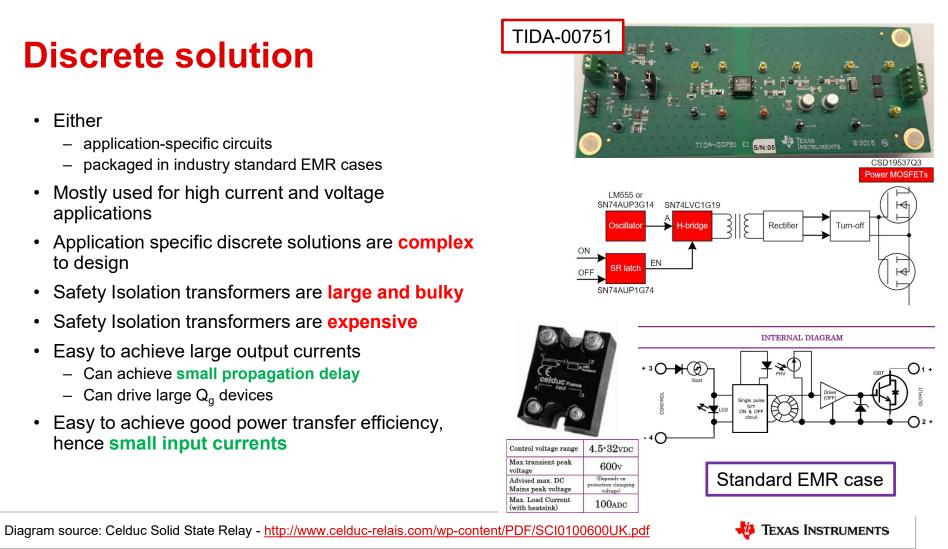
Technical approach

Isolated Power only, Direct Drive

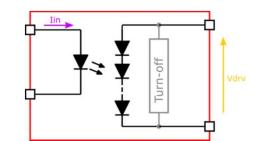

- Need a stable output voltage source (~10V)
- Direct coupling to load FETs gate
- Not controlled and Long turn-on time (T_{RISE})
- Power requirements dictated by T_{RISE}:
 - For 2x40nC in 10us → 80mW
 - For 2x2nC in 1ms \rightarrow 4uW
- Short total T_{ON} (minimum total capacitance)
- No external cap required

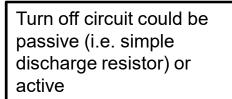
Isolated Power, Gate Driver

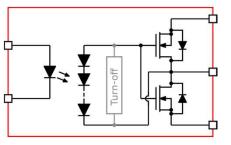
- One external cap required (~ 5 x C_{iss})
- Longer total T_{ON} (more total capacitance)
- Controlled and Shorter turn-on time (T_{RISE})

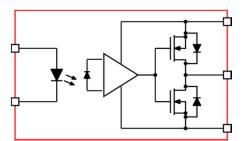

Isolated Power and Data, Gate Driver

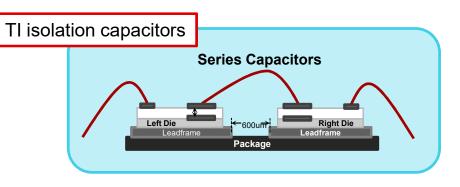
- Data rate is not very relevant, but acceptable propagation delay is ~ms or lower → 1~10kbps
 - Potential fit for Power Line Communication
- Power requirements dictated by $\mathbf{Q}_{g} \mathbf{x} \mathbf{V}_{drv} \mathbf{x} \mathbf{F}_{sw}$
- One time T_{DELAY} to charge V_{CAP}
- Controlled and Shorter turn-on time (T_{RISE})
- One external cap required (~ 5 x C_{iss})

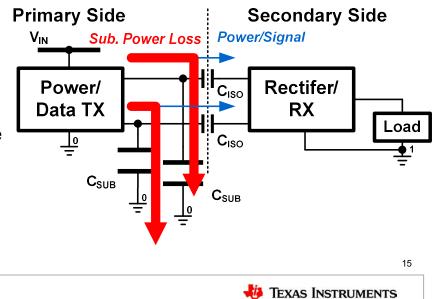

Discrete solution


- Either •
 - application-specific circuits
 - packaged in industry standard EMR cases
- Mostly used for high current and voltage applications
- Application specific discrete solutions are complex to design
- Safety Isolation transformers are large and bulky
- Safety Isolation transformers are expensive ٠
- · Easy to achieve large output currents
 - Can achieve small propagation delay
 - Can drive large Q_a devices
- Easy to achieve good power transfer efficiency, ٠ hence small input currents

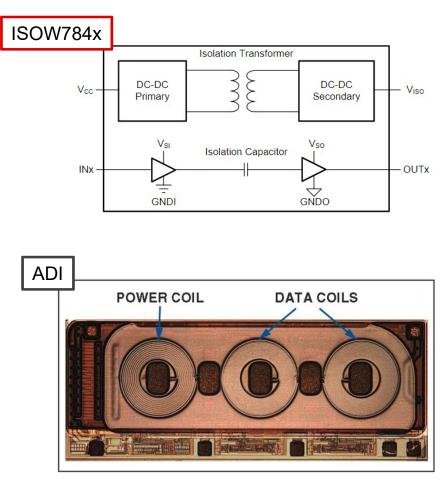

Opto based


- SSR driver solutions are typically referred to as **Photovoltaic opto-coupler**
 - Widely available on the market
 - Traditionally very cost-effective isolation solutions
 - Can optionally include integrated FET
- No need for light modulation implies no high frequency switching noise
- Output voltage has **wide variations** with input current and operating temperature (open loop)
- **Output power** is typically very limited (10~100uW)
- Input current is typically quite large (few mA) due to very low power transfer efficiency (<<1%)
- Maximum temperature rating in most of the cases is <85~105°C
- Some **automotive** manufacturers have reliability concerns on adopting opto-based solutions
- Some opto based SSR solutions focus on data-transfer only (on/off), assuming that gate driver supply power can be stolen/harvested/supplied from the load


14


Diagram source: Toshiba

Capacitive based


- Output power is proportional to the capacitance across the barrier, so this methodology is typically preferred and cost-effective for low output power (0.1~1mW range)
- **125°C temperature range** and **automotive grade** devices are widely available
- Given limited output power capabilities, large propagation delay should be expected
- Integrated isolation capacitors have large amount of capacitance towards the substrate which generates substantial power losses (1~10% efficiency), hence large input current
- Could **limit process selection** hence secondary side switch integration (other than MCM)
- Some capacitive based SSR solutions focus on datatransfer only (on/off), assuming that gate driver supply power can be **stolen/harvested** from the load

Inductive based

- No particular challenge in achieving large output power (100~500mW) for large loads with decent efficiency (30~50%)
- 125°C ambient temperature range is feasible, but care should be given to device self-heating
- Targeting very small load FETs (0.01~0.1W) with decent efficiency requires large inductance transformer or very high frequency operation
 - VHF operation could generate EMI/EMC concerns
 - Large inductance could generate concerns in terms of transformer die area
 - Large inductance could generate challenges in addressing 2.5kV_{rms} or lower isolation ratings with ≤4mm creepage packages
- No wide selection of **automotive grade** devices

🖊 Texas Instruments

Technology Comparison Summary

Technology	Discrete components	Opto-coupler	Silicon Capacitors	Integrated Transformer
Most common approach	IsoPower only Direct or Gate driver	lsoPower only Direct Drive	lsoPower only Direct Drive	IsoPower and Data Gate Driver
Most suitable load	Large Q _g FET or IGBT 600V / 100A	Small Q _g internal or external FETs	Small Q _g (1~10nC) External FETs	Medium/Large Q _g external FETs
Cost	High (safety transformer)	Medium / Low	Medium	Medium
Market availability	Medium	Wide	Narrow	Very narrow
Automotive availability	Very narrow	Narrow	Wide	Very narrow
Operating temperature [°C]	-4085/100	-2585/100	-40125	-40125
Propagation delay	Very small	Very large (~ms)	Large (≤ms)	Small (>us)
Input current	Small	Very large (~10mA)	Large (~1mA)	Small (<1mA)
Solution Size	Large	Small (thick)	Small (thin)	Small-Medium (thin)
Nice fit for	48V disconnect HV pre-charge	Isolation monitoring HV pre-charge	Isolation monitoring HV pre-charge	HV pre-charge 48V disconnect
🔱 Texas Instruments				

