

Hsinchu, Taiwan Oct. 17-19, 2018

Topology exploration and prototype for high voltage, low power, isolated DC-DC converter

Etienne Foray*, Bruno Allard*, Christian Martin*, Giovanni Frattini**

* University of Lyon, Ampère, France; ** Texas Instruments, Italy

Context and objective

- Multiplication of high-voltage DC buses due to electric car multiplication, aircraft electrification, etc. DC voltage that can be as high as 400 V or even 800 V in recent or future systems.
- Need to power tiny systems, sensors, etc. directly from the high-voltage DC bus, like the Pyroswitch for safety of an electric car battery. Required power is low, around 1 W.
- As a consequence, a new type of converter is required, adapted to this "unconventional" conversion.

Criteria for topology exploration

Maximum Volt-second reduction

Transformer size is a critical aspect to achieve low-volume converter. Maximum voltsecond applied to the transformer gives an indication on the **maximum flux density** (B_{MAX}) , used to determine core losses. A reduction of volt-second, linked to a reduction of the input voltage or to the reduction of voltage levels applied on the transformer will translate in smaller transformer, if keeping losses at same level.

Stress on power switches

Reduction of **voltage stress** on the power switches enable the use of devices with smaller voltage and current ratings, i.e. with **better performances**. It also allows easier **integration**.

Zero Voltage Switching (ZVS) operation

High-voltage present on switching device might generate very high **switching losses**, as they grow up with the square of the voltage. Zero Voltage Switching helps reducing these losses and allows to operate at higher switching frequencies.

Start-up and fast transient response

Due to high-voltage input, some phenomena at start-up or during fast transients might create some **additional stress** on components. Some topologies offer capabilities to avoid these issues.

Complexity

 Topology exploration was carried out to identify a candidate to operate the conversion and suitable for silicon integration.

Converter general specification	
Input voltage	From 250 V to 1000 V
Output voltage	12 V
Output power	$\sim 1 \text{ W}$
Isolation	Reinforced isolation
Expected efficency	>85%

Topologies

Stacked-Up-Capacitor stage

A Switched-Capacitor stage to divide the input voltage:

<u>Pros:</u>

- Input voltage of 2nd stage is reduced
 - 2nd stage switch voltage-stress reduced
 - Maximum volt-second is reduced
- Series capacitors share input voltage at start-up
- Reduced voltage-stress on 1st-stage switches
 Cons:
- No ZVS operation for 1st-stage MOSFETs
- At start-up, high inrush current in series capacitors and flying capacitors charging
- Imbalance issues between voltages levels

ISOP arrangements of several converters

ISOP arrangement of two Fly-Buck

3-Stacked-Up-Capacitors + 2nd stage topology several converters

Converters with Inputs in Series and Outputs in Parallel

<u>Pros:</u>

- Series converters share input voltage
 - Reduced voltage switch-stress
 - Sharing is effective also during start-up
- ZVS possible for all power MOSFETs
- <u>Cons:</u>
- Transformer with multiple windings required
- Synchronization is required between the control
- signals to enable the use of a unique transformer
 - No reduction of the maximum volt-second

This criterion accounts for aspects of the converter that will be obstacles to **integration** or to fabrication. Number of **active devices**, of which how many floating ones, number of **external passives**... Complexity is also linked to another aspect of converter, as regulation or complexity of components, as the transformer.

PCB prototype of 3-level FC Fly-Buck

- Topology chosen for its simplicity, compactness and good reduction of switch-stress and of maximum volt-second
- PCB prototype with discrete components is built to validate simulation waveforms

<u>Parameters:</u>

- Input voltage: 200 V
- Switching frequency: 100 kHz
- Output load: $\approx 150 \Omega$
- Magnetizing inductance: 1 mH
- Transformer turn ratio: 10:1
- Duty-cycle: 25%
- Dead-time ~ 400 ns

Isolated floating power supplies

power MOSFETs

High-voltage discrete

Control's signals Generated by PC software

led inductor

Coupled inductor with 10:1 turn ratio

95.75 V 101.9 V ∆6.147 V

Measurement outcome:

- Validation of ZVS operation
- Underlining stability issues of flying capacitor voltage
- Validation of output voltage

Multi-Level Flying-Capacitor Fly-Buck

- Isolated version of multi-level buck
- Fly-Buck topology: isolated output voltage controlled by top-switches duty-cycle (S1/S2)

<u>Pros:</u>

- Reduced voltage excursion of primary voltage
- Reduced voltage switch-stress
- ZVS is possible for all power MOSFETs

<u>Cons:</u>

- Additional control to regulate flying capacitor voltage
- Charging of the flying capacitors at start-up

3-Level FC Fly-Buck power-stage

estimation

- Reduced voltage stress on switches and transformer in steady-state mode
- Validation of low conduction losses and low transformer losses for Vin = 200 V
- Detection of expect flying capacitor's voltage stability issue

Contacts

Key contributions

- Important criteria identified
- Different topologies evaluated
- Comparison of unconventional topologies
- PCB prototype of the Multi-Level Flying-Capacitor Fly-Buck topology
- <u>Next step</u>: Silicon integration of the selected power-stage in a test-chip

Ampère laboratory, University of Lyon, France: etienne.foray@insa-lyon.fr; bruno.allard@insa-lyon.fr; christian.martin@univ-lyon1.fr Texas Instruments, Italy: giovanni.frattini@ti.com