POSTER SESSION

Session Chairs: Chia-Ling Wei (National Cheng Kung University, Taiwan), Ningning Wang (Hangzhou Dianzi University, People's Republic of China)

- 16:00 18:00 30 poster presentations
 - 8 different topic areas of PwrSoC
 - Authors comes from 10 different countries in 3 continents, Asia, Europe and North America.

Topic	#	1st Author	Affiliation	Poster Title
Emerging Technologies	1.1	Katherine A. Kim	Ulsan National Institute of Science and Technology (UNIST), Korea	Parallel Differential Power Processing Converter Approach for Photovoltaic- Powered Wearable Applications
	1.2	Romain DAVID	Université de Lyon, France	Study and Design of an Integrated VCSEL Driver (150MHz, 1W) for an iToF 3D-based CMOS Image Sensor
Granular Power Supply	2.1	Dragan Dinulovic	Würth Elektronik eiSos GmbH & Co. KG, Germany	PSiP Power Micromodules with Integrated Inductor for Point-of-Load Applications
	2.2	Francesco Cannillo	Dialog Semiconductor, Germany	Scalable System-level Approach for SoC Supply
	2.3	Toru Sai	University of Tokyo, Japan	Spike Noise Cancelling Circuit for Switched Capacitor DC-DC Converter Mounting MLCCs on CMOS die
Integrated Capacitive Devices	4.1	Mohamed Mehdi Jatlaoui	MuRata Integrated Passive Solutions, France	Thin Deep Trench Capacitors Stacking Process towards High density Low ESR/ESL passive devices
Integrated Magnetics	4.1	Barry Clarke	TEL Magnetic Solutions Ltd, Ireland	Optimisation of magnetic properties for single layer and laminated cores of cobalt rich amorphous films resulting from post deposition Magnetic Annealing
	4.2	Claudiu V. Falub	Evatec AG, Switzerland	Innovations in deposition of soft magnetic thin films with tunable properties for

				integrated power converters and RF components
Integrated Magnetics	4.3	Matthias Landmann	Singulus Technologies AG, Germany	PVD Production of soft magnetic multilayers for integrated magnetic inductors
	4.5	Seamus O'Driscoll	Tyndall Institute, Ireland	Electrical Characterisation of Thin Film CZTB Solenoid Inductor in 5V CMOS PwrSiP
	4.6	Seiya Abe	Kyushu Institute of Technology, Japan	Design Consideration of Air-Core On-Chip Spiral Coil for Power-SoC
	4.7	Takeshi Hara	RICOH Electronic Devices Co., Ltd., Japan	A planar inductor technology by spray-coat method for the power supply for compact IoT sensor node
	4.8	Yuki Sato	Kilby Labs, Texas Instruments, Japan	A SPICE Model of Inductors Considering Hysteresis Properties
egration	5.1	Jia WANG	Northwestern Polytechnical University, People's Republic of China	An Efficient Methodology of Building Power SoC
System Integration	5.2	Michael Brooks	Würth Elektronik eiSos GmbH & Co. KG, Germany	Thermal Advantages of Overmolding Power System in Package (PSiP) Modules
S	5.3	Yoshiki Sato	Kyushu Institute of Technology, Japan	Numerical predictions of a novel 3D stacked power-SoC structure based on hexagonal-BN
d S	6.1	Ahmed Ammar	Technical University of Denmark	Miniaturization of LED Drivers
Systems and Applications	6.2	Fangyu Mao	University of Macau, People's Republic of China	A Reconfigurable Cross-Connected Wireless- Power Transceiver for Bidirectional Device-to- Device Charging
S	6.3	Kuo-Chi (Kevin) Liu	Richtek Technology Corporation, Taiwan	Dynamic Impedance Matching Control for Wireless Power Charging Systems
lo	7.1	Etienne Foray	Université de Lyon, France	Topology exploration for high-voltage low power dc-dc converter
Topologies and Control	7.2	Frederik Spliid	Technical University of Denmark	Stacked Class E resonant Very High Frequency converter for European mains power factor correction
	7.3	Jens Christian Hertel	Technical University of Denmark	Using Time-Based Control Techniques for Active Rectification
	7.4	Kyoungho Lee	Korea Electrotechnology	A switch-only rectifier with switch off-time control for piezoelectric energy harvester

Topologies and Control			Research Institute, Korea	
	7.5	Chih-Wei Liu	National Cheng Kung University, Taiwan	Pipeline Control Sharing Technique for Voltage Regulators within Power Management Unit
	7.6	Sheng- Hsiang (Joe) Pan	National Taiwan University, Taiwan	A Monolithic Capacitor Current Constant On- Time Controlled Buck Converter Achieving Near Optimal Response without Stability Trade-off
	7.7	Sita Asar	The Ohio State University, U.S.A	Dual-Frequency SIMO Topologies for On-Chip Dynamic Power Supplies
	7.8	Toshiomi Oka	Kyushu Institute of Technology, Japan	Transient Response of a Digitally Controlled Power Supply Based on Power-SoC
	7.9	Yiru Miao	Chongqing University, People's Republic of China	Sliding Control Strategy for Start-up and Steady State of Boost Converter
	7.10	Zhiping Dong	School of Electrical Engineering, Chongqing University, People's Republic of China	The Modulation and Control Strategy of DC- link Current Minimization for Single-Phase Current Source Inverter
Wide Band Gap	8.1	Arvind Sridhar	IBM Research Zurich, Switzerland	GaNonCMOS: GaN Power Switches integrated with Si-CMOS for reliable power delivery systems

