Optimized Mobile System Power

"Exact Power @ Exact Time"

PWRSoC 2016
Session 8: Granular Power

Tong H. Kim
Principal System Power Architect
Samsung Electronics Corp/System LSI
Contents

- Mobile System Contents & Teardown
- System Power and Connectivity
- Power Delivery and Si Technology Trends
- System Power Management & Sequencing
- Putting it altogether!
Typical Smart Phone System Contents

- **Apps Processor**
 - 14nm Quad-Core
- **Graphics Processor**
 - Capable of 4K @ 60fps

- **Power Management**
 - PFM/PWM
 - Multi-Phase
 - Thin and Tiny

- **Cellular (LTE-A)**
- **WiFi (802.11abgn)**
- **BLE-4.1**
- **GNSS (Quad mode)**

- **Storage**
 - eMMC
 - UFS
 - DDR

- **Connectivity**
 - Cellular (LTE-A)
 - WiFi (802.11abgn)
 - BLE-4.1
 - GNSS (Quad mode)

- **Display**
 - AMOLED
 - 5.7” QHD (2560x1440)
 - RES = 3.7M-pixels

- **AP/GPU**
 - Apps Processor
 - 14nm Quad-Core
 - Graphics Processor
 - Capable of 4K @ 60fps

- **uBIO, CIS**
- **PMIC**
 - Power Management
 - PFM/PWM
 - Multi-Phase
 - Thin and Tiny

- **Storage**
 - eMMC
 - UFS
 - DDR

- **Connectivity**
 - Cellular (LTE-A)
 - WiFi (802.11abgn)
 - BLE-4.1
 - GNSS (Quad mode)

- **Display**
 - AMOLED
 - 5.7” QHD (2560x1440)
 - RES = 3.7M-pixels

- **AP/GPU**
 - Apps Processor
 - 14nm Quad-Core
 - Graphics Processor
 - Capable of 4K @ 60fps

- **uBIO, CIS**
- **PMIC**
 - Power Management
 - PFM/PWM
 - Multi-Phase
 - Thin and Tiny

- **Storage**
 - eMMC
 - UFS
 - DDR

- **Connectivity**
 - Cellular (LTE-A)
 - WiFi (802.11abgn)
 - BLE-4.1
 - GNSS (Quad mode)

- **Display**
 - AMOLED
 - 5.7” QHD (2560x1440)
 - RES = 3.7M-pixels

SEC/System LSI
Typical Wearable System Contents

Storage
- UFS - 4GB
- DDR - 768MB

Connectivity
- WiFi (802.11bgn)
- BLE-4.2
- NFC, MST, GPS
- Glonass

Display
- AMOLED - 1.3” Always-ON
 - 360x360 @ 278ppi

AP/GPU
- Apps Processor
 - 14nm 2x-Core @ 1GHz
- Capable of 4K @ 60fps

uBIO
- BIO Processor
 - Accelerometer
 - Gyro, Barometer
 - HRM, Ambient Light
- uBIO Processor
 - Accelerometer
 - Gyro, Barometer
 - HRM, Ambient Light

PMIC
- Power Management
 - PFM/PWM
 - Thin and Tiny

Battery Management
- WPC Inductive
- Battery Management
 - WPC Inductive

Power Management
- PFM/PWM
- Thin and Tiny

Power Management
- PFM/PWM
- Thin and Tiny

Battery Management
- WPC Inductive
- Battery Management
 - WPC Inductive
Galaxy S7-Edge Teardown

Galaxy S7-Edge Platform Front-Side

- SK Hynix H9KNNTUMU-BRNMH 4 GB LPDDR4 SDRAM layered over the Qualcomm MSM8996 Snapdragon 820
- Samsung KLUBG41CE 32 GB MLC Universal Flash Storage 2.0
- Avago AFEM-9040 Multiband Multimode Module
- Murata FAJ15 Front End Module
- Qorvo QM78064 high band RF Fusion Module and QM63001A diversity receive module
- Qualcomm WCD9335 Audio Codec
- Maxim MAX77854 PMIC and MAX9850A REV2 audio amplifier

Galaxy S7-Edge Platform Back-Side

- Murata KM5D17074 Wi-Fi module
- NXP 67T05 NFC Controller
- IDT P9221 Wireless Power Receiver (likely an iteration of IDT P9220)
- Qualcomm PM8996 and PM8004 PMICs
- Qualcomm QFE3100 Envelope Tracker
- Qualcomm WTR4905 and WTR3925 RF Transceivers
- Samsung C3 image processor and Samsung S2MC0202 PMIC

* Courtesy of iFixit
Typical Mobile Device System Power

Mobile System Device Ingredients

- OLED PMIC
- SoC PMIC
- UFS PMIC
- Camera PMIC
- Audio Codec
- SPK AMP
- Interface BMS-IC
- MFC IC

Mobile System Power Device Connectivity

- SOC
- SOC PMIC
- Type-C
- mUSB
- Charger Fuel-Gauge
- Self Discharger
- WPT
- UFS PMIC
- UFS/eMMC
- mSSD
- Camera
- Display
- LCD
- OLED
- LCD PMIC
- OLED PMIC

SEC/System LSI
Silicon Technology Trend Setters

1985
- 5.0V
- CMOS
- Gate level power analysis
- RTL power analysis
- Gate level power optimization
- Power gating
- Power intent specs
- High-K gate dielectric
- FinFETs
- Ultra-Low Voltage
- 2.5D & 3D designs
- System-level Power Modeling

1995
- 3.3V

2005
- 2.5V
- 1.8V
- 1.2V

2015
- 0.6V
- 0.35V?

* Courtesy of DAC 2016
Power Delivery Requirements

Not η_{PEAK}, not even η_{MAX}, but \textbf{W-I-D-E-S-T $\eta_{\text{HIGH}}(\%)$ Wins!}

Higher Power Requirement \rightarrow Complex Power Delivery and Management

<table>
<thead>
<tr>
<th>Component</th>
<th>Power Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Charger</td>
<td>• ISP Core-DVS</td>
</tr>
<tr>
<td>CAM/SNS Power</td>
<td>• Avg. PWR Track</td>
</tr>
<tr>
<td>Modem/RF Power</td>
<td>• ENV. Tracking</td>
</tr>
<tr>
<td>Storage Power</td>
<td>• Dyn. Lane CTRL</td>
</tr>
<tr>
<td>Display Power</td>
<td>• Panel PWR DVS</td>
</tr>
<tr>
<td>GPU Power</td>
<td>• On-Fly On/Off</td>
</tr>
<tr>
<td>CPU Power</td>
<td>• DVFS</td>
</tr>
<tr>
<td></td>
<td>• Power Gating</td>
</tr>
<tr>
<td></td>
<td>• CL-DVFS</td>
</tr>
<tr>
<td></td>
<td>• Power Gating</td>
</tr>
<tr>
<td></td>
<td>• Auto-CLK</td>
</tr>
</tbody>
</table>

\[\eta(\%) \]

\[\eta_{\text{MIN}} \rightarrow \eta_{\text{PEAK}} \rightarrow \eta_{\text{MAX}} \]

\[P(\text{W}) \]

\[P_{\text{MIN}} \rightarrow P_{\text{MAX}} \]

User Interface
- ERM
- LRA
- RAM

USB Interface
- Adaptive Charging

SEC/System LSI
System Power Saving Techniques

Multi-Φ BUCK

Adaptive Volt. Position

APT Technology

Average Power Tracking
: Discretely stepped V_{SUPPLY}

ET Technology

Envelope Tracking
: Cont. Modulated V_{SUPPLY}

Cascaded Sub-Regulation

$V_{\text{BATT}} = 3.7\text{V}$

$V_{0,\text{BUCK}} = 1.2\text{V@1A}$

$V_{O1} = 1.1\text{V}$

$V_{O2} = 1.0\text{V}$

$V_{O3} = 0.95\text{V}$

$V_{O4} = 0.9\text{V}$

$> 50\%$ Increase

Max. $P_{\text{SAV}} = 25\%$

Max. $P_{\text{SAV}} = 35\%$
Typical Mobile SoC Power Sequencing

- **Input Power**
 - 1-S Li-ion **BATT**
 - **V_{BUS}** &/or **V_{SYS}**

- **PMIC Enabler**
 - Discrete On/Off
 - **I\(^2\)C**

- **VR Sequencer**
 - Integrated SEQ
 - By-pass via **I\(^2\)C**

- **PMIC COM-Link**
 - Interrupts via **I\(^2\)C**
System Power Management Technology

- **THERM_THROT:** Active Thermal Throttling
 - Skin Temperature Consideration
 - System Thermal Throttling
 - CPU & Device Thermal Throttling

- **SMPL:** Sudden Momentarily Power Loss
 - Dynamic f_{CLK} Throttling to LFM for System Stability

- **P_{MAX}:** Maximum Power

- **P_{LIM}:** Power Limiting

- **ACPI:** Advanced Configuration & Power Interface
 - G-State: G0 ~ G4 // S-State: S0 ~ S4
 - C-State: C0 ~ C6 // P-State: P0 ~ P_n, P_m
 - D-State: D0 ~ D4

- **APM:** Android Power Management
Mobile System Power trends increase in Complexity
→ Expect more features/performance with longer battery life

Advances in System Power Delivery
→ New advanced technologies for higher and flatter efficiency

System Power Management
→ System Power Delivery must be controlled
→ Aging ACPI and APM...

Intelligent System Power Management???
Thank you
Backup
Packaging Technology

<table>
<thead>
<tr>
<th>Package Solution</th>
<th>WB_FBGA</th>
<th>QFN_ELP</th>
<th>FC-FBGA (CUF/MUF mini)</th>
<th>WLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKG Cost</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★★★★☆☆</td>
</tr>
<tr>
<td>Reliability</td>
<td>★★★★★</td>
<td>★★★★★</td>
<td>★★★★☆☆</td>
<td>★★★★★</td>
</tr>
<tr>
<td>PKG size</td>
<td>★★★★★</td>
<td>★★★☆☆</td>
<td>★★★☆☆</td>
<td>★★★★★</td>
</tr>
<tr>
<td>(Degree of Freedom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Remark** | - Popular Packaging Method
- PKG size limit ; > 3.0x3.0mm²
(Die-size Independent)
- Limitation of Array-type Pad configuration. | - Popular Packaging Method
- Quality issue
(PKG crack Issue due to CTE Gap (LF/EMC/EPOXY))
- Limitation of Array-type Pad configuration. | - Popular Packaging Method
- Cost addition (PCB & Bump) | - PKG size = Chip size
- Complicated Process
(WF level EDS/Test Issue (Vertical probing) Ball pitch & Chip size is estimated.
Only outsource site. |
Multi-Phase SMPS for Wide Efficiency Curvature

Conditions:
- $V_{IN} = 3.8\, \text{V}$, $V_{OUT} = 0.9\, \text{V}$
- $L = 0.47\, \mu\text{H}$, $C_{IN} = 10\, \mu\text{F}$, $C_{OUT} = 66\, \mu\text{F}$

9A, 3-Φ BUCK: $\eta(\%)_{\text{MAX}} = 89\%$

Bridge Shedding

Phase Shedding

Power-TR Size X Phase

9A, 3-Φ BUCK: $\eta(\%)_{\text{MAX}} = 89\%$
SYS_P_{SAV} Technique: Adaptive Volt Positioning

AVP Explained

- **i_{load}**: Load current
 - **Sleep**: Active
 - **V_{MAX}**: Maximum voltage
 - **V_{MIN}**: Minimum voltage
 - **V_{OUT,BUCK} w/o AVP**: Output voltage without AVP
 - **V_{OUT, BUCK} with AVP**: Output voltage with AVP
 - **0.5x(V_{MAX} - V_{MIN})**: Low V_{OUT}, High I_{OUT}

AVP Results

- **P \approx 3W**
- **P \approx 2.85W**
- **\downarrow 5%**

- **0.985V**: Light Load
- **0.950V**: Heavy Load

- **I_{load}**: Load current

w/o AVP

with AVP
SYS_P\textsubscript{SAV} Technique: Cascaded Sub-Regulation

Low Dropout Regulator
- \(\eta = 27.0\% \)
- \(V_{\text{BATT}} = 3.7V \)
- \(V_{\text{OUT}} = 1.0V \)
- \(I_{\text{OUT}} = 1A \)

Cascaded Sub-REG BUCK+LDO
- \(\eta = 0.67 \sim 82\% \)
- \(V_{\text{BATT}} = 3.7V \)
- \(V_{\text{OUT}} \) increases by \(>50\% \)

BUCK
- \(\eta = 90\% \)
- \(V_{\text{BATT}} = 3.7V \)
- \(V_{\text{OUT}} = 1V \)
- \(I_{\text{OUT}} = 1A \)
SYS_\text{P}_{\text{SAV}} \text{ Technique: APT & ET for RF}

APT & ET Introduction

- PA’s power consumption is at the peak during smart phone wireless transmission.
- Average Power Tracking and/or Envelope Tracking techniques are used to increase energy efficiency.

Average Power Tracking

- PA’s supply voltage is discretely stepped in order to save power

Envelope Tracking

- PA’s supply voltage is continuously modulated to match envelope to save power

APT Technology

- **Average Power Tracking**: Discretely stepped \(V_{\text{SUPPLY}} \)
- **Envelope Tracking**: Continuously modulated \(V_{\text{SUPPLY}} \)

Max. \(P_{\text{SAV}} = 25\% \)

Max. \(P_{\text{SAV}} = 35\% \)

APT-PMIC Block Diag.