Foundry WLSI Technology for Power Management System Integration

R&D, TSMC

Outline

● Motivation
 ■ PMIC system integration trends
 ■ Foundry WLSI technology Portfolio

● High Performance Computing System (HPC) on CoWoS
 ■ VR on CoWoS
 ■ Impact of Si interposer

● Mobile AP and PMIC System (MAPS) on InFO
 ■ Power Delivery Network
 ■ PVR on InFO

● Summary & Outlook
Motivation: High Efficiency Power Management System

- **PMIC System Trend:**
 - System on PCB → System on SoC/Package
 - Shared Voltage → Per-core Voltage Control
 - V_{dd} Scaling → Low PDN Impedance Needed
 - Long Battery Life → High Efficiency Voltage Regulator

- **System on PCB → System on SoC/Package**
Motivation: High Efficiency Power Management System

- Shared voltage → Per-core voltage control

- V$_{dd}$ Scaling → 0.74V → Low PDN Impedance

- Long Battery Life → High Efficiency VR → Low Ohmic Loss

Source: 2013 ITRS & JEDEC
System Integration from PCB to Package

Benefits from System on Package

- PDN path: Long → Short
- Discrete component number: Dozen → Several
- Switching frequency: 10 MHz → 100 MHz
 - L: μH → nH
 - C: μF → nF
- Form factor: Large → Small
TSMC WLSI Technology Platforms
from low cost to high performance

InFO
- Multi-chip integration
- 3D integration
- Smallest form factor
- Cost competitive

CoWoS
- High performance and bandwidth
- Multi-chip integration
- Flexible integration

* WLSI: Wafer Level System Integration
SoC and VR(M) System Design on CoWoS

- **System 1:** VRM on board, SoC on substrate (FCBGA)

- **System 2:** VRM on board, SoC on Si interposer

- **System 3:** VR and SoC on Si interposer
SoC and VR(M) System Design on CoWoS

1. System 1: VRM on board, SoC on substrate
 - PDN path: VRM → PCB → Substrate → SoC
 - PDN L/W: PCB/50/5 mm, Substrate/12/4 mm
 - PDN metal layer: PCB/2, Substrate/10

2. System 2: VRM on board, SoC on Si interposer
 - PDN path: VRM → PCB → Substrate → Si Interposer → SoC
 - PDN L/W: PCB/50/5 mm, Substrate/12/4 mm, Si interposer/12/4 mm
 - PDN metal layer: PCB/2, Substrate/8, Si Interposer /2

3. System 3: VR and SoC on Si interposer
 - PDN path: VR → Si Interposer and Substrate → SoC
 - PDN L/W: Substrate/12/4 mm, Si interposer/12/4 mm
 - PDN metal layer: Substrate/8, Si Interposer /2

FOM: PDN impedance, voltage drop and voltage variation
PDN Impedance Reduction from Si Interposer

1. VRM on board, SoC on Substrate
2. VRM on board, SoC on Si interposer
3. VR and SoC on Si interposer

Interposer mitigates anti-resonance at high frequencies

Short interconnect reduces PDN impedance: DC and AC

Numbers of De-cap to be decreased
Si Interposer Reduces Voltage Drop and Voltage Variation

- DC voltage drop
- Voltage variation (@ 2GHz switching freq.)

- The voltage drop and voltage variation from VR to SoC \(\propto \) PDN Impedance
- The VR and SoC on Si interposer system
 - DC voltage drop: 23% of VRM on board, SoC on substrate system
 - Voltage variation: 80% of VRM on board, SoC on substrate system
Capacitance of Si Interposer Suppresses PDN Z Anti-Resonances

- High conductivity Si interposer suppresses the anti-resonances
- High Si conductivity → High TSV Liner capacitance → More suppression of PDN Z anti-resonance

Cross section of TSV and equivalent circuits
SoC and VR(M) System Design on InFO for Mobile Products

- **System 1: FC and PMIC**
 - PDN path: VRM → PCB → Substrate → SoC
 - PDN routing: in millimeter scale

- **System 2: InFO and PMIC**
 - PDN path: VRM → PCB → InFO → SoC
 - PDN routing: in millimeter scale

- **System 3: InFO with partitioned VR (PVR)**
 - PDN path: VR → InFO → SoC
 - PDN routing: in micrometer scale

- **FOM:** PDN impedance, voltage drop, voltage variation, power response
PI: A measure for power supply stability; related to impedance of power distribution network (PDN)

PDN impedance is

\[Z_{PDN} = R + j\omega L + \left(\frac{1}{j\omega C} \right) \parallel Z_{VR} \]

where \(Z_{VR} \) is the impedance of voltage regulator.

Low R & L in PDN \(\rightarrow \) Low \(Z_{PDN} \) \(\rightarrow \) Better PI performance
Low PDN Impedance in InFO Package

- PDN impedance: InFO_PoP is 16% of the FC_PoP.
- InFO_PoP: Substrate & C4 Bump eliminated and thin RDL
- Low PDN impedance → High power stability
The PDN Impedance for the InFO + PVRs system

- PDN impedance: 9% of FC & PMIC system
- Resistance: 17% of FC & PMIC system
- Inductance: 9% of FC & PMIC system
The Voltage Drop and Variation for the InFO + PVRs System

- DC voltage drop
 - The voltage drop and voltage variation from VR to AP ∝ PDN Impedance
 - The InFO with PVRs system
 - DC voltage drop: 17% of FC & PMIC system
 - Voltage variation: 25% of FC & PMIC system
Power Response for InFO + PVRs System

- Transient time: Time period for power on from 0 to 1 stable state
- The InFO with PVRs system
 - Transient time: 11% of FC & PMIC system
Summary of the PI Results

<table>
<thead>
<tr>
<th>System specifications</th>
<th>PDN Z @10MHz</th>
<th>PDN Z @200MHz</th>
<th>Voltage drop</th>
<th>Voltage variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 1: VRM on board, SoC on substrate (FCBGA)</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
<tr>
<td>System 2: VRM on board, SoC on Si interposer</td>
<td>1.01x</td>
<td>0.45x</td>
<td>1.03x</td>
<td>0.93x</td>
</tr>
<tr>
<td>System 3: VR and SoC on Si interposer</td>
<td>0.14x</td>
<td>0.27x</td>
<td>0.23x</td>
<td>0.8x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System specifications</th>
<th>Resistance</th>
<th>Inductance</th>
<th>Voltage variation</th>
<th>Transient time</th>
</tr>
</thead>
<tbody>
<tr>
<td>InFO with PVRs</td>
<td>0.17x</td>
<td>0.09x</td>
<td>0.25x</td>
<td>0.11x</td>
</tr>
<tr>
<td>InFO & PMIC</td>
<td>0.91x</td>
<td>0.63x</td>
<td>0.67x</td>
<td>1x</td>
</tr>
<tr>
<td>FC & PMIC</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
<td>1x</td>
</tr>
</tbody>
</table>
Summary and Outlooks

• Foundry WLSI technology, CoWoS and InFO, provides leading edge solutions for power management system integration.

• The technologies provide excellent PDN performance for low power consumption, low voltage drop and low voltage variation for system design.

• V_{dd} scaling of SoC leads to power system design challenges → TSMC WLSI technology provides the design solution.
Thanks for your attention!