Electrical and Thermal Packaging Challenges for GaN Devices

Paul L. Brohlin

Texas Instruments Inc.

October 3, 2016

Outline

- Why GaN?
- Hard-Switching Losses
- Parasitic Inductance Effects on Switching
- Thermal Challenges of Surface Mount Packages

Why GaN?

- Zero reverse-recovery enables efficient hard-switched CCM converters
- Low output capacitance reduces switch charging losses enabling faster switching speeds
- Low input capacitance reduces gate drive losses enabling higher switching frequency
- Higher switching speeds reduce transformers, inductors, and capacitors size
- Lateral structure enables integration

Why GaN? - 48V to POL

- GaN enables single stage efficient hardswitched POL converter
- Single conversion
 - reduces component count in half
 - ~3x power density improvement
- Hard-switched topology improves transient response

48V – 12V Bus Converter 12V 92-97% Efficient

Why GaN? – CCM Totem Pole PFC

- GaN enables CCM Totem Pole PFC
 - No Qrr
 - Low switching losses
- GaN enables higher switching frequency
 - Reduces inductor size
- CCM Totem
 - Lower components
 - 30% higher power density

1kW Totem Pole PFC

Outline

- Why GaN?
- Hard-Switching Losses
- Parasitic Inductance Effects on Switching
- Thermal Challenges of Surface Mount Packages

In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during $t_1 - t_2$ and $t_2 - t_3$. E_{oss} and E_{ch} are determined by C_{oss} and Vbus.

High Side Loss:

$$P_{hs} = V_{bus} * \frac{I_{ind}}{2} * \frac{t_{1_{2}}}{\tau} + \frac{V_{bus}}{2} * I_{ind} * \frac{t_{2_{3}}}{\tau} + f_{sw} * (E_{oss} + E_{ch})$$

Low-Side Loss:

$$P_{ls} = V_{ds_3q} * \frac{I_{ind}}{2} * \frac{t_{1_2}}{\tau}$$

In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during $t_1 - t_2$ and $t_2 - t_3$. E_{oss} and E_{ch} are determined by C_{oss} and Vbus.

High Side Loss:

$$P_{hs} = V_{bus} * \frac{I_{ind}}{2} * \frac{t_{1}}{\tau} + \frac{V_{bus}}{2} * I_{ind} * \frac{t_{2}}{\tau} + f_{sw} * (E_{oss} + E_{ch})$$

Low-Side Loss:

$$P_{ls} = V_{ds_3q} * \frac{I_{ind}}{2} * \frac{t_{1_2}}{\tau}$$

In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during $t_1 - t_2$ and $t_2 - t_3$. E_{oss} and E_{ch} are determined by C_{oss} and Vbus.

High Side Loss:

$$P_{hs} = V_{bus} * \frac{I_{ind}}{2} * \frac{t_{1_{2}}}{\tau} + \frac{V_{bus}}{2} * I_{ind} * \frac{t_{2_{3}}}{\tau} + f_{sw} * (E_{oss} + E_{ch})$$

Low-Side Loss:

$$P_{ls} = V_{ds_3q} * \frac{I_{ind}}{2} * \frac{t_{1_2}}{\tau}$$

In CCM with positive inductor current, the high-side device dominates the switching losses. Turning on the high-side device faster will reduce the losses due to the inductor conducted through the high-side device during $t_1 - t_2$ and $t_2 - t_3$. E_{oss} and E_{ch} are determined by C_{oss} and Vbus.

High Side Loss:

$$P_{hs} = V_{bus} * \frac{I_{ind}}{2} * \frac{t_{1}}{\tau} + \frac{V_{bus}}{2} * I_{ind} * \frac{t_{2}}{\tau} + f_{sw} * (E_{oss} + E_{ch})$$

Low-Side Loss:

$$P_{ls} = V_{ds_3q} * \frac{I_{ind}}{2} * \frac{t_{1}}{\tau}$$

Eoss vs Ech

- C_{oss} is very non-linear for GaN and most high voltage power devices
- $E_{\rm oss}$ is the energy stored in the $C_{\rm oss}$ at a defined $V_{\rm ds}$

 $E_{oss} = \int_0^{V_{bus}} C_{oss}(V_{ds}) * V_{ds} \, dV$

- E_{ch} is the energy dissipated in the highside when charging the low-side C_{oss} $E_{ch} = \int_{0}^{V_{bus}} C_{oss}(V_{ds_ls}) * (V_{bus} - V_{ds_ls}) dV$
- $E_{ch} > E_{oss}$ when C_{oss} is larger at low V_{ds}
- Any parasitic SW node capacitance will sum with C_{oss} of the low-side fet
 - No snubbers

Outline

- Why GaN?
- Hard-Switching Losses
- Parasitic Inductance Effects on Switching
- Thermal Challenges of Surface Mount Packages

Common Source Inductance

- Common Source inductance reduces the di/dt during turn-on and turn-off.
 - Increases power dissipated during the di/dt ramp
- 5nH common source inductance increases turn-on loss by 60%

Gate Loop Inductance

- Gate loop inductance increases the impedance between the gate and the driver.
 - Limits the ability to hold off the GaN device during the Vds ramp
 - Shoot through increases the power dissipated in the high-side device and can cause it to fail due to SOA.
- Gate loop inductance increases ringing
 - Higher stress on gate
 - Ringing can cause the device to turn-on/off
 - Loop resistance is required to dampen ringing

Low-side hold-off versus gate-loop inductance red = 2 nH, green = 4 nH, blue = 10 nH

Reduction of Common Source & Gate Loop Inductance

Power Loop Inductance

- Power loop inductance
 - Increases Ringing and EMI
 - Increases V_{ds} voltage stress
 - Increase switching losses
- Package must be designed to enables low power loop inductance PCB layout
- GaN must be switched without snubber to have high efficiency

CCM Switching Waveforms

LMG3410 HB EVM

1kW Totem Pole PFC

Outline

- Why GaN?
- Hard-Switching Losses
- Parasitic Inductance Effects on Switching
- Thermal Challenges of Surface Mount Packages

Thermal

- Power packages need to have good thermal dissipation capability
- GaN has high R_{ds_on} temperature coefficient.
 - Lower junction temperature reduces conduction loss
- Surface mount packages do not dissipate power as well as traditional leaded packages
 - Heat dissipates through PCB
 - Typically have smaller heat spreaders

Thermal Dissipation

Power dissipation: ~12 W (50C ambient and 110C max junction temperature)

Power dissipation: ~7 W (50C ambient and 110C max junction temperature)

Package Thermal Pad

- Area of thermal pad must large enough to reduce thermal resistance of TIM
- Thermal pad must have sufficient thickness to spread heat over TIM

$$\Delta T_{TIM} = \frac{P_{diss} \times A_{TIM}}{d_{TIM} \times \lambda_{TIM}}$$

Package Comparison

ompai			V	
	GSG	5516T		Source
				Gale

Package	TO220	QFN	Bumped Die	Embedded	TOLL	Sintered Dual Cool
Common Source Ind	*	++	++	++	++	++
Gate Loop Ind		++	++	++	++	+
Power Loop Ind		++	++	++	++	+
Thermal	++	+	-	+	+	++**
Cost	++	++	++	-	+	

* Additional kelvin source pin eliminates common source inductance

** Includes isolation

Drain

Conclusions

- GaN's lower switching losses enables high efficiency and high density designs
 - No reverse recovery
 - Low Qoss and Qiss
- Low inductance package is required to realize GaN switching performance
 - Low common source inductance to reduce losses during di/dt phases
 - Low gate loop inductance to hold device off and reduce gate ringing
 - Integrating the driver in the package will minimize gate loop and common source inductance
 - Package must enable low power loop inductance PCB layout
 - Power loop must be designed without snubbers
- GaN package must have good thermal performance
 - Large thick power pad to spread heat and lower TIM drop
 - Direct thermal connection to heat sink eliminates PCB thermal resistance

Thank You

