UNIVERSITY OF UDINE

Department DPIA Via delle scienze 206 33100 Udine (UD), Italy

POWER MOS GATING OPTIMIZATION FOR BALANCING EFFICIENCY VS. RELIABILITY IN HARD-SWITCHING CONVERTERS

Michelis¹ S., Faccio¹ F., Ripamonti¹ G., Blanchot¹ G. and Saggini² S. ¹CERN PH dept, ESE group, Geneva, Switzerland ²DPIA University of Udine

Assistant professor Stefano Saggini PowerSoC Madrid (Spain)

Outline

- Tracker supply application
- Integrated DC-DC power train project
- Reliability
- Proposed architecture
- Conclusions

Application

Conditions in the experiments:

- Magnetic flux density is about 8 T
- High radiation level
- □ Temperature: -20 to +150 °C
- Limited material budget

Power distribution scheme of the CMS tracker

Converter specifications

Power train design

□ 130nm IO MOS

In low voltage CMOS R_{dsON} resistance depends on the metallization more than channel resistance

CMOS power train for low voltage

- The CMOS power train advantage for low voltage and low power application
 - Simple n-well architecture with less junction isolation problem (lower maximum n-well voltage)
 - Simplest driving system without bootstrap capacitor (external or integrated)

Theoretical Switch optimization method

□ The total loss of the due to each switch can be expressed as $P = \frac{K_{F}}{2} = \frac{1}{2} \frac{$

 $R_{DSOn} = K r_{dsOn} / A$

$$Q_{gd} = A K q_{gd}$$

$$Q_g = A K q_g$$

Conduction losses	Switching losses	Driving losses
	$ A + f(V_{Off} I_{On} A K q_{gd}) $	$/(2i_g) + V_{driver} A Kq_g$

 i_g term is unknown

Reliable power converters

Analysis of spikes to determine a drive current I_G in order to have a reliable power converter

Spikes effects

\square With I_L>0 HS turn ON and OFF:

- High voltage spikes on HS V_{ds} (For snapback issue reduction of Vds max on HS)
- High voltage spikes on HS V_{gs} limit on the oxide voltage failure
- High voltage spikes on LS V_{gd} limit on the oxide voltage failure and HCI degradation

Reliability for gate oxide peak voltage

Relation between the peak voltage on oxide and failure

Converter board impedance model

Relation between spikes and I_g

Peak voltage as a function of the driver Current in the Power MOS Stage @ 2 A and 4 A of load current

Relation between spikes and I_g

Switching energy losses as a function of the rise and fall time of the gate voltage of the power stage @ maximum load

Power train optimization

□ Test chip dimension 2.78 mm X 2.1 mm

Proposed adaptive method

Proposed control method for spikes on the input voltage

Schematic of the peak detection

Peak detection by an High frequency sample and hold circuit

Peak detector logic

Optimization algorithm

Conclusions

- The proposed architecture optimize the rise and fall time in order to optimize the efficiency guaranteeing the converter reliability
- Test chip with the peak voltage track and hold
- Assembly in October and Laboratory test in November