1



# Wide Input DC/DC Converters



# outline



- Introduction and motivation
- Comparison of prior art PoL topologies
- Novel flying capacitor based topology
- Experimental results
- Conclusion

# Introduction and motivation



#### Scope:

 Non-isolated PoL DC/DC converters for intermediate bus power architecture

**Requirements:** 

- High power efficiency
- Small solution size
- Good dynamic performance



Intermediate bus power architecture for PoL applications

Common approach: dedicated PoL converter for each combination of Vin/Vout

Can we find a universal topology which can serve them all?



03.10.2016 M.Haug

# Comparison of prior art PoL topologies II





| topology                    | pros                                                                                                                                                           | cons                                                                                                                                                    |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-Phase<br>interleaved buck | <ul><li>wide range step down conversion</li><li>simple structure</li></ul>                                                                                     | <ul> <li>all 4 switches need to be rated to the full input voltage</li> <li>large L at high V<sub>in</sub> and conversion ratio close to 0.5</li> </ul> |
| Double step-<br>down buck   | <ul> <li>good for high step-down ratios</li> <li>3 of 4 switches can be rated to V<sub>in</sub>/2</li> <li>smaller L needed for same current ripple</li> </ul> | • maximum conversion ratio: 0.25                                                                                                                        |
| 2-phase 3-level<br>buck     | <ul> <li>smaller L needed for same current ripple</li> <li>all switches can be rated to V<sub>in</sub>/2</li> </ul>                                            | <ul><li>more complex structure</li><li>higher number of switches (8)</li></ul>                                                                          |

## Comparison of prior art PoL topologies III

preferred topology depending on operating conditions

 Vin
 2-phase 3-level<br/>trade-off switching with<br/>conduction loss
 2-phase 3-level<br/>or<br/>double step-down<br/>Dow switching and<br/>conduction loss

 single phase 3-level<br/>low switching losses
 2-phase interleaved<br/>Low conduction losses

Can we find an universal approach which combines the advantages of these different topologies?





#### Novel 7-switch flying capacitor (7SFC) based multi-level buck converter



**Combines following advantages:** 

- Wide conversion range of the interleaved buck
- High step-down advantages of double step down buck
- Reduced voltage ratings and switching voltages of the 3-level converter

### Novel flying capacitor based topology II





- Digital controller to implement multiple modes of operation
- Mode select block determines operating mode based on V<sub>in</sub>, V<sub>out</sub>, I<sub>out</sub>

#### **Experimental results – discrete prototype**





 $f_{SW} = 800 \text{kHz}$  $L_1 = L_2 = 1 \mu \text{H} \text{ (7SFC)}$ 

Discrete prototype of 7SFC topology (digital controller realized by FPGA)

#### **Experimental results – efficiency I**



Experimental efficiency comparison between conventional 2-phase buck and 7SFC buck

#### **Experimental results – efficiency II**



Experimental efficiency comparison between conventional 2-phase buck and 7SFC buck

# size comparison



|                            | 7SFC vs Conventional buck |
|----------------------------|---------------------------|
| inductance                 | -33%                      |
| output capacitance         | -33%                      |
| silicon area <sup>1)</sup> | -56%                      |

<sup>1)</sup> assumption: silicon area proportional to  $V_{in,max}^2$ 

# conclusion



Presented novel 7-switch flying capacitor multi level buck converter shows significant advantages in terms of power efficiency and size compared to conventional 2-phase interleaved buck thanks to:

- switch voltage reduction by V<sub>in</sub>/2
- increased complexity together with operating-condition dependent changes of the switching sequence
- flying capacitor based approach
- reduced inductor and output capacitor requirement

## acknowledgement



- Parth Jain
- Tom Moiannou
- Aleksandar Prodić