

Integration of pre-fabricated ultra-high density (1000 nF/mm²) capacitor films (50-75 microns) onto wafers and panels

Himani Sharma, P. M. Raj* (Presenting author), Parthasarathi Chakraborti, Teng Sun, Nathan Neuhart, Kamil-Paul Rataj^, Saumya Gandhi+, Udo Merker&, Frank Stepniak+, Matt Romig+, Mitch Weaver, Naomi Lollis#, and Rao R. Tummala

3D Systems Packaging Research Center, Georgia Institute of Technology, Atlanta, USA ^ - H.C.Starck GmbH, Im Schleeke 78-91, 38642 Goslar/Germany

+ - Texas Instruments, 13020 TI Blvd, Dallas, TX 75243

A.V.X. Corporation, One AVX Blvd, Fountain Inn, SC 29644

& Heraeus Inc., Leverkusen, Germany.

Outline

- Introduction to GT Packaging Research Center
- Capacitor needs for consumer, telecom and automotive industry
- Capacitor integration strategies
- Tantalum film capacitors on silicon
 - Capacitor Integration
 - Capacitor performance
 - Reliability studies
- Integrated voltage regulator (IVR) with capacitors and inductors

Packaging Research at Georgia Tech

Slide 3

Why Collaborate With Georgia Tech PRC

- No. 1 Academic Leader in IC & Systems Packaging
- Technical Vision Consistent with Market Needs
- Co-development of Panel-based Glass Packaging with 50 Global Researchers, Developers, Manufacturers and users
- Explore and Develop Advanced Systems Packaging Technologies Beyond Industry's 3-year Horizon
- Seamless from R&D, Prototype, and Tech Transfer Enabling Commercialization
- Track Record of Technology Breakthroughs
- Only 300mm Cleanroom Panel Facility in the Academic World
- > 50 Person Co-development Team: Full-time Researchers, Manufacturing Industry Partners, Graduate Engineers, Faculty and On-campus Industry Engineers
- Leverage: \$8M/100k

Ultra-miniaturized Power and RF modules with Passive-Active Integration

Performance

Capacitor Needs

Capacitor Technologies

iPDIA

Si Trench

Cap. Density	>0.5 µF/mm ²
Thickness	100 µm
Operating Frequency	100 Hz – 1 MHz
Leakage current	~0.1 µA/µF
Packaging	thin-film

Etched Al

	Cap. Density	1 µF/mm²
	Thickness	~1000 µm
	Operating Frequency	100 Hz – 0.3 MHz
	Leakage current	~0.01 µA/µF
	Packaging	SMD

' Helsinki

S\$164ee77

Silicon-Integrated High-Density Capacitors

Silicon-Integrated High-Density Inductors

Bulky Ta Vs Silicon-Integrated Ta Film Capacitors

200 micron conducting path	50 micron conducting path
CP/Carbon/Silver paste/lead frame	Minimal interfaces; Direct metallization of CP with Cu/Au
100 milliohms x microfarad	20-50 milliohms x microfarad
1-5 MHz	>10 MHz

Capacitor Integration scheme

Demo. of Capacitor Integration

- Sintered tantalum electrodes on tantalum films
- Laminated onto Silicon

CONFIDENTIAL

 Via connections with laser drilling, metallization

Supply Chain Involvement

Capacitor Performance

~1µF/mm² obtained wiuth:

- 80 KA grade with thin dielectric thickness (8V/10V)
- 150 KA with thick dielectric thickness (12V)

Reliability of passivated capacitors

• Increase in capacitance observed post 500 hr of thermal cycling

CONFIDENTIAL

Reliability of Passivated Capacitors 65°C/95%RH 500 hours

Capacitance comparable or higher after thermal and moisture test

[•] All foils passed 65/95 for 500 hours

Competitiveness of GT Approach with Embedding Si Integrated Ta Capacitors

	Inductor 22 mm rea R2 m R2 m rea rea rea rea rea rea rea rea	Capacitor Inductor Capacitor PCB IC Solder Ball MicroSiP TM Module Cross-Section (Courtesy of System Plus Consulting)		INDUCTOR CAPACITOR IC
	Discretes	 Embedded ICs 	 on-chip 	 3D Packages
Inductors	 Ferrites; 	 Embedded or SMDs 	 Thinfilm inductors 	 Thinfilm inductors
Capacitors	MLCCs	MLCCs	 Trench capacitors 	 Thinfilm capacitors
EFFICIENCY				
POWER HANDLING				
SIZE				
COST				
MANUF READINESS				

Summary

Pioneered a breakthrough capacitor integration technology on wafers and packages:

- Unlimited capacitance density on Silicon
- Low cost cheaper than traditional discrete passives
- Extensible to high voltages
- Extensible to high frequencies

Created an ecosystem of supply chain involving:

- Material suppliers,
- Component manufacturers
- End-users

Extending this baseline technology to:

- High-voltage power modules: Ex. Automotive
- Automotive battery chargers
- Integrated voltage regulators

