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Required for magnetics success 

 Good materials: copper and ? 

 Geometry selection 

 Good models: faster than 3D FEA 

 Design optimization: target system efficiency 

and power density not arbitrary inductor specs 

 Fabrication process 

 Measurements 

 Reliability 

 Low cost 
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All are important but only items in 

red discussed in this talk 

 Good materials: copper and ? 

 Geometry selection 

 Good models: faster than 3D FEA 

 Design optimization: target system efficiency 

and power density not arbitrary inductor specs 

 Fabrication process 

 Measurements 

 Reliability 

 Low cost 
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Two types of inductors 
Pot-core 

 Core wraps winding 

 

 Many intermediate geometries are also possible 

Toroidal 

 Winding wraps core 
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Inductors on Si 

Pot-core  

(MCM) 

Toroidal 

(CMC) 
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 Two magnetic depositions  One magnetic deposition. 
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Nano-composite magnetic materials 

Advantages: 

 Ferromagnetic (coupled particles) 

 High resistivity (300 ~ 600 μΩ∙cm) controls eddy-

current loss independent of flux direction. 

 Some have strong anisotropy for low permeability 

and low hysteresis loss. 

Magnetic Metal 

Ceramic 

(3~5 nm Co 

Particles) 

(Al2O3, ZrO2, etc.) 
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Co 

O 

Si 

TEM of multilayer nanogranular film 

100 nm 

HRTEM11 
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Permeabilty vs. frequency 
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Magnetic anisotropy: common in 

thin-film magnetic materials 
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Easy Axis 

Hard Axis: 

Near-perfect  

lossless loop 

 Hard axis loop provides: 

 Low permeability 

needed to avoid 

saturation in inductors. 

 Low hysteresis loss. 



Microfabricated inductors 

Pot-core  

(MCM) 

Toroidal 

(CMC) 
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 Two magnetic depositions 

 Uses magnetic material 

only in hard axis 

 Does not work with 

uniaxial anisotropy 



Applying anisotropic materials in 

microfabricated magnetics 

 Racetrack for multi-turn high-Z;  

 V-groove for single-turn low-Z. 

 Material oriented by field applied during deposition 

Hard axis 

Easy axis 

Racetrack                           V-groove                           



Fabrication 
Steps 1-7 of 11 

 Mostly standard 

processes. 

 Reactive sputtering of 

Co-Zr-O magnetic 

material. 

 Shadow mask or wet 

etching 
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Fabrication 
Last 3 steps 

Sloping sidewalls on top 

insulator achieved with 

prism-assisted UV-LED 

lithography. 
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Racetrack inductors fabricated at Dartmouth 

14 

 
10/13/2016 



15 

Performance in 100 V to 35 V converter and 

comparison to other some other work:  

Racetrack L 
1st Gen  

V-groove 

Intel coupL 

Virginia  

Tech 
Fuji 

ferrite 

UMinn. 
2nd Gen V-groove 

Fudan U. 



Flux crossing magnetic laminations 

 Problem in corners 

where top and bottom 

magnetic core halves 

join. 

 Excess eddy currents 

limit efficiency and Q. 

 Power loss, due to 

out-of-plane flux 

(OOPF):  POOPF. 
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Variations on the theme: Other 

designs with the same problem. 

 V-groove 1-turn inductor  

for high current (up to 12 A) 

 Polyimide substrate with sputtered 

material on both sides 

 Microfabricated coupled inductors  

(2004, with Tyndall) 
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 Solution: 

 Induced radial anisotropy, such that flux travel is always in the 

low-loss hard-axis direction. 

Toroidal Inductors:  

No out-of-plane flux!  No POOPF! 

 Advantage: 

 Flux stays in plane, minimizing eddy-current losses. 

  Challenge: 

 Flux direction varies; sometimes oriented incorrectly for the 

magnetic material anisotropy.  
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Flux  

Core  

 

 

 

  

 

 

  

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

Winding  
Radial anisotropy 

Qiu and Sullivan. APEC, 2012 



Fixture to deposit toroidal cores with 

radial anisotropy 
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Fabricated array of fixtures 

Co-Zr-O radial-anisotropy cores 

2.54 mm 

7.8 mm 

5.7 mm 

1.6 mm 

7.2 mm 

magnet 

substrate 

iron 

copper 

Qiu and Sullivan , CIPS, 2012 

Outer diameters: 5.5 mm 

Inner diameters: 1.7 mm, 2.3 mm, 3.4 mm 

Thickness: 6 μm, 40 μm 



Permeability of radial-anisotropy cores 
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 High Q: ~ 100 at about 

60 MHz. 

 Resonance at about  

800 MHz. 

 Two test fixtures agree. 
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Custom-built fixture 

Agilent test fixture 

Outer 

diameter 

Inner 

diameter 

thickness 

5.5 mm 3.4 mm 40 μm  



Permeability of radial-anisotropy cores 

with different thicknesses 
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 Both cores show a real part of 

relative permeability of about 40. 

 Both cores show Q~100  

at f < 100 MHz. 

 Characteristics differ at              

f > 500 MHz: 

 The thicker core has a 

lower resonant frequency, 

presumably a self-

resonance of the multi-layer 

structure.  
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40 μm 

6 μm 

Outer 

diameter 

Inner 

diameter 

thickness 

5.5 mm 3.4 mm 40 μm  

5.5 mm 3.4 mm 6  μm 

Measured by Agilent test fixture 



CoZrO core integrated inductor:  

Dartmouth cores integrated by Georgia Tech 

2mm 



CoZrO core integrated inductor: Dartmouth 

cores integrated by Georgia Tech 
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Batch fabrication 

 Cores were deposited on individual 

substrates, and manually dropped in windings 

at process mid-point. 

 OK for a demonstration project, but can we 

do true batch fabrication? 

 Many on one substrate. 

 All processes on one substrate. 

 Avoid the need for a tiny magnet for each. 
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Side view 

Shared-magnet radial-field fixture 

 Can make any number of radial-field  

regions with only two magnets.  

 Can photo etch new top plate for a new design. 

Permanent  

magnet 



Process flow 
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Si Substrate 

SiO2 

Cu Seed Layer 

Copper 

SU-8 

CoZrO Core 

Cu or Ti-Cu-Ti seed layer sputtered 

Cu electroplated in photoresist mold 

Seed layer etched and SU-8 insulator formed 

Nanogranular magnetic core deposited and oriented 

Additional SU-8 insulator layer 

Top conductor and electrical vias fabricated together 



Samples with dummy core 

All four-turn inductors—lower winding design minimizes capacitance.   
See Jizheng Qiu, A.J. Hanson, C.R. Sullivan,  "Design of toroidal inductors with multiple 

parallel foil windings“ Control and Modeling for Power Electronics COMPEL 2013. 

 



Summary 

 Anisotropic nanocomposite magnetic materials can provide 
high performance at MHz frequencies. 

 Design options for anisotropic materials include 

 Racetrack and similar geometries. 

 Toroids with radial anisotropy. 

 Racetrack inductor performance proven in high-voltage dc-dc 
converters. 

 Radial anisotropy proven in individual cores. 

 Process proposed for batch fabrication of toroidal inductors. 

 Other important topics not addressed here include modeling, 
design optimization, and measurement techniques. 
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Anisotropic Co-Zr-O Thin Films 
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magnet array 
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Magnetic material properties: 
• High Resistivity: 300~600 µΩcm 

• Relative permeability: 80~100 

• High saturation flux density: 1.2 T 

• Low coercivity: 4 Oe  

• High in-plane anisotropy 



Thin-film inductor geometries 
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Racetrack Toroid 

Pictures from “Integrating Magnetics for on-Chip Power: A Perspective”, C. R. Sullivan et al., IEEE trans on power electronics, 2013. 

Solenoid 

Closed core Yes Yes No 

Core deposition steps 2 1 1 

Magnetic vias Yes No No 

Compatible with 

uniaxial anisotropy 

Yes No Yes 

Via loss in racetrack 


