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Required for magnetics success

= Good materials: copper and ?
= Geometry selection
= Good models: faster than 3D FEA

= Design optimization: target system efficiency
and power density not arbitrary inductor specs

= Fabrication process
= Measurements

= Reliability

= Low cost
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All are important but only items In
red discussed In this talk 1/

= Good materials: copper and ?
s Geometry selection
= Good models: faster than 3D FEA

= Design optimization: target system efficiency
and power density not arbitrary inductor specs

= Fabrication process
= Measurements

= Reliability

= Low cost
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Two types of inductors

Pot-core Toroidal

= Core wraps winding = Winding wraps core

= Many intermediate geometries are also possible
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Inductors on Si

Pot-core . Toroidal
(MCM) | (CMC) =~

= Two magnetic depositions = One magnetic deposition.
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Nano-composite magnetic materials  “j

Magnetic Metal

(3~5nm Co
Particles)

Ceramic (Al,O,, ZrO,, etc.)
Advantages:

= Ferromagnetic (coupled particles)

= High resistivity (300 ~ 600 puQ-cm) controls eddy-
current loss independent of flux direction.

= Some have strong anisotropy for low permeability
and low hysteresis loss.
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Permeabilty vs. frequency [/
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Magnetic anisotropy. common In
thin-film magnetic materials 1/

= Hard axis loop provides:

= Low permeability :
needed to avoid Easy AXIS
saturation in inductors. u r B R I

= Low hysteresis loss.

Hard AXxIs:
lossless loop
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Microfabricated inductors

Pot-core . Toroidal
(MCM)

= Two magnetic depositions

| | Does not work with
= Uses magnetic material uniaxial anisotropy

only in hard axis
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Applying anisotropic materials in
microfabricated magnetics

Hard axis

Easy axis

Racetrack V-groove

= Racetrack for multi-turn high-Z;
= V-groove for single-turn low-Z.
= Material oriented by field applied during deposition
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Fabrication
Steps 1-7 of 11 oS

2. A Co-Zr-O film is sputtered through an Invar shadow mask

= Mostly standard
processes.

= Reactive sputtering of
Co-Zr-O magnetic
material.

) Co-zr-0 (35 um) silicon 500um) [ sio, Gum) @ Invar (250 um)

3. An SU-8 insulation layer is patterned on top of the Co-Zr-O core

0.5 mm

= Shadow mask or wet
etching

6. Copper is plated from the seed layer to fill the NR-21 mold

i -

'7. The NR-21 mold is stripped and the Ti/Cu/Ti seed layer is etched

0.5 mm

e

B nNR-2165um) B Co-2r-0 (35 um) silicon (500 um) [} Si0, (3 um)

Magnet Copper (40 um) SU-8 (25 um)
fixture

12



Fabrication
Last 3 steps

Sloping sidewalls on top
Insulator achieved with
prism-assisted UV-LED
lithography.
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9. Prism-assisted UV-LED lithography is used to pattern sloping walls

10. The SU-8 is developed to reveal the sloping and straight walls

() Co-zr-0 (35 um) Silicon 500 um) ) Sio, (3 um) Glass prism

Copper (40 um) SU-8 (25-50 um)

11. Another Co-Zr-O film is sputtered through an Invar shadow mask

(12. The inductors are completed once the shadow mask is removed

R, N ofs
0.5 mm

- —

. Invar (250 um) D Co-Zr-0 (35 um) Silicon (500 um) . SIO, (5 um)

Copper (40 um) SU-8 (25 um)
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Racetrack inductors fabricated at Dartmouth
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Performance in 100 V to 35 V converter and
comparison to other some other work:
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Flux crossing magnetic laminations

= Problem in corners
where top and bottom
magnetic core halves
join.

= EXxcess eddy currents
limit efficiency and Q.

= Power loss, due to

out-of-plane flux
(OOPF): Pgope-
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Variations on the theme: Other
designs with the same problem. §

= V-groove 1-turn inductor
for high current (up to 12 A)

= Polyimide substrate with sputtered
material on both sides

= Microfabricated coupled inductors
(2004, with Tyndall)
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Toroidal Inductors:
No out-of-plane flux! No Pygp¢! |/

= Advantage:

= Flux stays in plane, minimizing eddy-current losses.
= Challenge:

= Flux direction varies; sometimes oriented incorrectly for the
magnetic material anisotropy.

= Solution:

= Induced radial anisotropy, such that flux travel is always in the

low-loss hard-axis direction. : :
Radial anisotropy
Qiu and Sullivan. APEC, 2012

Hard axis
</Core
Easy axis

Flux
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Fixture to deposit toroidal cores with
radial anisotropy

Co-Zr-O radial-anisotropy cores

Outer diameters: 5.5 mm
Inner diameters: 1.7 mm, 2.3 mm, 3.4 mm
Thickness: 6 ym, 40 pm

Qiu and Sullivan , CIPS, 2012
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Permeability of radial-anisotropy cores

diameter | diameter
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Permeability of radial-anisotropy cores
with different thicknesses 1/,

Outer |Inner | thickness Measured by Agilent test fixture
diameter | diameter

5.5mm 34 mm 40 um

55 mm 3.4 mm 6 um 1000 0 = = i
(o) @ l .
. o A
Both cores show areal partof >, 100 o  o00o® * 6 pum
relative permeability of about 40. = . . -
p y E . ° .J. i * _ g 7&.
Both cores show Q~100 < e 1 50 -
at f < 100 MHz. = A R | m
Characteristics differ at g 10—~ o % om
f > 500 MHz: GEJ " . " 3
= The thicker core has a T e . e e »
lower resonant frequency, £ el Do 3 :
presumably a self- o ‘ 4
resonance of the multi-layer K o P 7 Ky g ’\



CoZrO core integrated inductor:
Dartmouth cores integrated by Georgia Tech
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CoZrO core integrated inductor: Dartmouth
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grated by Georgia Tech
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Batch fabrication

= Cores were deposited on individual
substrates, and manually dropped in windings
at process mid-point.

= OK for a demonstration project, but can we
do true batch fabrication?
= Many on one substrate.
= All processes on one substrate.
= Avoid the need for a tiny magnet for each.
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Shared-magnet radial-field fixture

Slde view

0 T
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= Can make any number of radial-field
regions with only two magnets.

= Can photo etch new top plate for a new design.



Process flow

Cu or Ti-Cu-Ti seed layer sputtered

Cu electroplated in photoresist mold

Seed layer etched and SU-8 insulator formed

Nanogranular magnetic core deposited and oriented

Additional SU-8 insulator layer

Top conductor and electrical vias fabricated together

. Si Substrate

M sio,
M cu Seed Layer

L] Copper

SU-8

. CoZrO Core
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Samples with dummy core

——

All four-turn inductors—Ilower winding design minimizes capacitance.

See Jizheng Qiu, A.J. Hanson, C.R. Sullivan, "Design of toroidal inductors with multiple
parallel foil windings® Control and Modeling for Power Electronics COMPEL 2013.



Summary 1/,

= Anisotropic nanocomposite magnetic materials can provide
high performance at MHz frequencies.

= Design options for anisotropic materials include
= Racetrack and similar geometries.
= Toroids with radial anisotropy.

= Racetrack inductor performance proven in high-voltage dc-dc
converters.

= Radial anisotropy proven in individual cores.
= Process proposed for batch fabrication of toroidal inductors.

s Other important topics not addressed here include modeling,
design optimization, and measurement techniques.
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Anisotropic Co-Zr-O,Thin Films &y

Sputterlng Wlth external f|eId
1r- i
Sputter gun ~ 05" Loop along easy .
2
g ot Loop along hard axis
A / T
Co target, / Zr target 051 ]
\ !
External magnetic field / magnet array ar ]
1.5
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Applied field (Oe)
30
= Sputtering without external ]
Magnetic material properties: g %9 '
* High Resistivity: 300~600 pQcm S 10
* Relative permeability: 80~100 é ol
* High saturation flux density: 1.2 T g
 Low coercivity: 4 Oe % -10r
* High in-plane anisotropy g 20
30

-200 -100 0 100 200
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hin-film inductor geometries |/

Via loss in racetrack

Racetrack Toroid Solenoid

Core deposition steps 1
Magnetic vias No
Compatible with Yes
uniaxial anisotropy

Pictures from “Integrating Magnetics for on-Chip Power: A Perspective”, C. R. Sullivan et al., IEEE trans on power electronics, 2013. 31



