

Integrated Power Conversion and Power Management

next generation technology for emerging business opportunities, October 3-5 2016, Madrid, Spain

new technologies new applications new markets

Design and Fabrication of Bond Wire Micro-Magnetics with LTCC core

<u>Antonio Camarda</u>¹, Enrico Macrelli², Marco Tartagni¹, Rudi P. Paganelli³ and Aldo Romani¹

¹Dept. of Electrical, Electronic & Information Engineering, University of Bologna, Cesena, Italy. ²Dept. of Electrical & Computer Engineering, National University of Singapore, Singapore. ³National Research Council CNR–IEIIT c/o University of Bologna, Bologna, Italy.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

Outline

- ≻ More than Moore systems
- ➢ Bond wire magnetics and example of applications
- ➢ Ferromagnetic LTCC
- > Miniaturized bond wire transformer and applications
- Optimization of the inductance value
- ➢ Conclusions

Outline

≻ More than Moore systems

> Bond wire magnetics and example of applications

Ferromagnetic LTCC

> Miniaturized bond wire transformer and applications

> Optimization of the inductance value

Conclusions

Introduction

- Technology improvements is leading towards miniaturization of circuits.
- Shrunk systems allow a lower production cost and are less power demanding
- > The powered delivered by transducers/devices (inductors) depends on their volume
- Magnetic devices can be integrated at package level together with the dedicated IC through MEMS technologies (IMEMS)
- Nevertheless, devices embedded through MEMS techniques can be viewed as IC pre- or postprocessing steps, or sometimes need a processing on a separate wafer
- In addition to MEMS processes, bond wire technology is able to give additional value to More than Moore (MtM) systems

More than Moore (MtM)

- Moore's law is valid only for digital systems
- A capacitor cannot be shrunk without new materials, as well as inductors.
- High voltage devices and power devices have self-defining sizes, dictated by the laws of physics and they scale poorly.
- ➤ The majority of analog applications fall in the technology node of 0.13µm and above.
- With increasing miniaturization of systems, analog ICs allow the possibility of further embedded functionalities.
- MtM systems provide additional value in different ways to migrate from the system boardlevel into the package (SiP) or onto the chip (SoC).

Typical Power Converters w/o Magnetic Components

Linear regulator

- > **Pros**: no reactive devices. Easily integrable
- Cons: Very low efficiency if V_{OUT}/V_{IN}<<1. No boost voltage.

Switched capacitor circuit (charge pump)

- Pros: no reactive devices. Easily integrable.
 Higher efficiency compared to linear reg.
- Cons: Higher complexity. Losses proportional to frequency. $P_{lost} = \frac{1}{2}C(\Delta V)^2 f$
- Switched capacitor circuits offer more flexibility compared to linear ones, at the expenses of higher system complexity

- ➤ Increase of switching frequencies leads to smaller and smaller systems
- > Passive components are potentially integrable at System on Chip (SoC) level
- > At f >50MHz, air- core inductors, or magnetic core-based inductors?

Efficient systems cannot exclude magnetic-core devices [1]

[1] C. O. Mathúna et al. "Review of integrated magnetics for power supply on chip (PwrSoC)." IEEE Tran. Power Electron. 27.11 (2012): 4799-4816.

Outline

> More than Moore systems

> Bond wire magnetics and example of applications

Ferromagnetic LTCC

> Miniaturized bond wire transformer and applications

> Optimization of the inductance value

Conclusions

Bond Wires Applications

for the second s

Generally used for chip interconnection for applications ~ GHz

... or as solenoids [2]

...can be used as standalone inductors (~1-2nH/mm), providing much less resistance than IC metal layers

[2] J. Lu et al., "Modeling, design, and characterization of multiturn bondwire inductors with ferrite epoxy glob cores for power supply system-on-chip or system-in-package applications." *IEEE Trans. Power Electron.* 25.8 (2010).

Bond Wire Magnetics Advantages

- ► Inductors/transformers can be embedded using standard IC bond wire technology.
- > The upper metal layer is used for the bottom winding, bond wire for winding closure.
- Complementary technique compared to MEMS LIGA processes and simpler (no need of post processing steps or sacrificial layers):
 - Circuits can lay under the inductor and designed independently from the top magnetic, allowing SoC structure. With MEMS bulk/surface micromachining processes this is not possible (MEMS should be processed on a separate wafer).
- Allows for planar magnetic cores, the *B* field does not leak into the bottom circuit (with toroidal core no interferences, no latch-up, higher efficiency).
- > Typical MEMS implementations are spiral inductors using very thick metallizations, and a top thin magnetic layer (inductance enhancement $10-20X \rightarrow$ high demagnetization $\rightarrow B$ leaking outside the device)

Bond Wire Microtransformer with Ferrite Core (on pcb)

Top view (MnZn 75 ferrite core) [3]

- > Core thickness ≈ $500 \mu m$
- External (internal) diameter=3.95 (2.15) mm
- > 1:N=1:38
- ► $L_{22} \approx 315 \,\mu\text{H} @ f = 100 \text{ kHz } \& V = 100 \text{ mV}$
- ▶ Effective footprint area $\approx 25 \text{ mm}^2$

- > Q @ f=100 kHz ≈ 6.2> Very high Inductance density ≈ 12.8 µH/mm²
- Ferrite core $\mu_r = 5000$

[3] E. Macrelli et al. "Modeling, Design, and Fabrication of High-Inductance Bond Wire Microtransformers With Toroidal Ferrite Core". *IEEE Trans. Power Electron.* 30.10, 2015, pp. 5724–5737.

Application of Bond Wire Transformers

- > Typical power converters cannot boost voltages lower than the V_{TH} of the power MOS.
- > A battery-less start-up circuit is used to store energy in a capacitance
- > The energy is used to drive the gate of the power devices (high voltage, low current)

Boost Oscillator with Bond Wire Microtransformer and Ferrite Core

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONAL

Bond Wire Microtransformer with LTCC Core (on pcb)

 $l \times p \times w_c \times h = 7.0 \times 3.0 \times 1.0 \times 0.4 \text{ (mm)}$

- ► Core thickness $\approx 400 \mu m$
- > Major (minor) axis =7.0 (3.0) mm
- ▶ 1:N = 1:52
- \succ L₂₂ ≈ 30 µH @ f=100 kHz & V=100 mV
- ► Effective footprint area $\approx 28 \text{ mm}^2$

ESL 40011 [4] Ferrite core $\mu_r \approx 200$

- The start-up voltage is inversely proportional to the turns ratio N and parasitic series *Rdc* resistance at the primary of the transformer.
- > Increasing *N*, *Rdc* increases \rightarrow no benefit.
- → High μ_r (1000-5000) → *Rdc* increases in the MHz range
 - → Need of lower μ_r material and high resistivity ρ_c like magnetic LTCC

[4] E. Macrelli et al. "Design of Low-Voltage Integrated Step-up Oscillators with Microtransformers for Energy Harvesting Applications". *IEEE Trans. Circuits Syst. I, Reg. Papers* 62.7, 2015, pp. 1–10.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

Outline

> More than Moore systems

> Bond wire magnetics and example of applications

Ferromagnetic LTCC

> Miniaturized bond wire transformer and applications

> Optimization of the inductance value

Conclusions

Example of Soft Magnetic Materials

Material	Resistivity $\rho_c \left(\Omega \mathrm{cm}\right)$
) ferrite	107
ferrite	107
n ferrite	106
	105
2	104
rite	10*
ferrite	$10^2 - 10^3$
rrite	10^{2}
rite	$4 \cdot 10^{-3}$
c glass	$125 \cdot 10^{-6}$
ermallov)	$45 \cdot 10^{-6}$
icon steel, 2.5% Si)	$40 \cdot 10^{-6}$
v (50%)	$35 \cdot 10^{-6}$
(5070)	$25 \cdot 10^{-6}$
ilicon iron, 170 SI)	$25 \cdot 10^{-6}$
(sincon iron, 0.25% SI)	$10 \cdot 10^{-6}$
ron)	$9.6 \cdot 10^{-6}$
ocrystalline	$1.2 \cdot 10^{-6}$

Generally, as rule of thumb, the higher the permeability, the lower the resistivity
 Lower resistivity implies higher losses and lower frequencies application

Source: [5] K. Kazimierczuk, High-Frequency Magnetic Components. New York, NY, USA: Wiley, 2009.

The Ferromagnetic LTCC Material Properties

LTCC = Low Temperature Co-fired Ceramic Commercial name ESL 40012: flexible cast film of magnetic powder dispersed in an organic matrix [6]

- > Ceramic material with relatively high μ_r : <500-1000>
- > High resistivity ρ_c : <10³-10⁶ Ω ·m>
- > Sheet thickness $t_l \sim 60 \ \mu m$
- > Fired shrinkage $S \sim 17\%$ (X, Y & Z)
- Suitable for high frequency magnetics (hundreds of MHz)

Two commercial samples of ESL 40011 and ESL 40012

[6] Y. M. Nguyen et al. "Soft ferrite cores characterization for integrated micro-inductors." J. Micromech. Microeng. 24.10 (2014): 104003.

Permeability Change with Firing Temperature

- The magnetic properties of the ESL 40012 have been extensively investigated in literature [7]:
 - The real part of the permeability can range from 400 (Firing temperatures ~ 900°C) up to 1000 (Firing temperatures ~ 1300°C), with a cut-off frequency f_c between 2 and 3 MHz, for toroids with $n_l = 62$ layers (~3.5 mm of thickness).
 - The peak of the imaginary part of the permeability (losses) can range from 250 (Firing temperatures ~ 800°C) up to 400 (Firing temperatures ~ 1300°C) at frequencies between 2 and 3 MHz, for toroids with $n_l = 62$ layers (~3.5mm of thickness).
 - For ferrites the cut-off frequency relative to the eddy currents losses of the of the real and imaginary part goes with the square of the thickness of the sample: thinner samples might provide better performances (at low frequencies hysteresis losses dominate)

[7] N. Blaz et al. "Complex permeability changes of ferritic LTCC samples with variation of sintering temperatures." *IEEE Trans. Magn.*, Vol. 48, n. 4 (2012), pp. 1563-1566.

The LTCC core Fabrication Procedure

1), 2), 3) $n_l = 9$ layers of green tapes of thickness $t_l = 60 \ \mu\text{m}$ are stacked with a warm isostatic press @ 14 MPa and T=70°C 4) In the cutting step the stack is cut in a toroidal race-track shaped pattern with a laser equipment (λ =355 nm and P=7 W) 5), 6) Firing phase and final sintered device.

Outline

> More than Moore systems

> Bond wire magnetics and example of applications

Ferromagnetic LTCC

> Miniaturized bond wire transformer and applications

> Optimization of the inductance value

Conclusions

LTCC Microtransformer on-top-of-chip

Top view of the microtransformer bottom side

Zoomed view on the metal stripes, Pads are highlighted in red

- > Bottom winding realized in a 0.35 μ m CMOS process.
- Bottom winding realized with top metal level
- The minimum distance between the turns is coherent with the minimum distance allowed by the technology

The Fabricated Device

laminated single stack of the ferromagnetic LTCC core before (top) and after (bottom) the firing step.

The final device after the bonding phase $l \times p \times w_c \times h = 3.8 \times 2.0 \times 0.5 \times 0.39$ (mm)

[8] E. Macrelli et al. "Design and Fabrication of a 29 uH Bondwire Micro-Transformer with LTCC Magnetic Core on Silicon for Energy Harvesting Applications". *Procedia Engineering* 87, 2014, pp. 1557–1560.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONAL

PwrSoC integration: hybrid solution

- LTCC ferrite core requires high-temperature firing
- CMOS compatibility can be tackled by using hybrid integration
 - Fully sintered ferrite core with higher inductance density is fabricated off-chip
 - Core is assembled on-top of the SoC with upper windings made of bonding wires
 - Cost-effective solution with high throughput wire bonding machines
- Control circuitry and switches devices can be fabricated with standard silicon technology → PwrSoC integration

[6] Y. M. Nguyen et al. "Soft ferrite cores characterization for integrated micro-inductors." J. Micromech. Microeng. 24.10 (2014): 104003.

Experimental Measurements

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

il presente materiale è riservato al personale dell'università di bologna e non può essere utilizzato ai termini di legge da altre persone o per fini non istituzional

Comparison with Commercial Transformers

Parameter	This device	LPR4012	LPR6235
Core type	LTCC Ferrite	Ferrite	Ferrite
<i>n</i> ₁₂	50	10	10
<i>k</i> *	0.65	0.95	0.95
A_r (mm ²) x h (mm)	15 x 0.5ª	16 x 1.1	36 x 3.5
L ₂₂ (µH)@Q _{max}	31	190	2500
L_{22} / R_{DC} (μ H/ Ω)	2.4 ^e	16.4	213.7
$L_{22} / A_r (\mu H/mm^2)$	2.1	11.9	69.4
$L_{22} / A_r \ge h \ (\mu H/mm^3)$	4.1	10.8	19.8
Q ₂₂ ^b (max)	11.6@1.3MHz	57@850kHz	88@158kHz
I _{max} (A)	$pprox 1.0^{c}$	1.7 ^d	1.3 ^d
Integration	on-chip	discrete	discrete

a: without substrate.
b: at 0.1 V RMS.
c: recommended to avoid wires damage.
d: due to core saturation.
e: can be increased by increasing the diameter of bonding wires
*: can be enhanced by a higher tightening of the winding

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Applications of the Device

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONAL

Outline

> More than Moore systems

> Bond wire magnetics and example of applications

> Ferromagnetic LTCC

> Miniaturized bond wire transformer and applications

> Optimization of the inductance value

Conclusions

Optimization Based on the Winding

Top views of fractions of a square toroid (racetrack core) inductor

 \rightarrow L/R ratio unchanged, but higher footprint area [9]

Higher turn number and width constant \rightarrow L/R ratio unchanged

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

Optimization of the Core Width

[9] A. Camarda et al. "Design Optimization of Integrated Planar Magnetic Core Inductors". IEEE Trans. Magn. 51.7, 2015, pp. 1–10.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

Correct estimation of the inductance

[9] A. Camarda et al. "Design Optimization of Integrated Planar Magnetic Core Inductors". IEEE Trans. Magn. 51.7, 2015, pp. 1–10.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA \cdot CAMPUS DI CESENA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONA

A Further Optimization

- Some considerations
 - The magnetic flux density is not uniform not even in the optimized structure: this is a waste of area
 - The External borders of the core, give little contribution to the whole magnetic path
 - Narrower cores provide more uniform magnetic fields.

 $W_{C} = 0.45L_{R}$

 $W_{C} = 0.1L_{R}$

0.8 0.6

0.4

0.2

0.8 0.6 0.4

0.2

Serpentine Toroid

Advantages:

- Thinner core → B is more uniform → less
 waste of used area
- Higher area used \rightarrow less waste of unused area
- Intuitively can present higher performances

$$L < \frac{\left(\int_{0}^{P_{IT}} n(x)dx\right)^{2}}{\Re} = \frac{\left\{n_{0} \cdot \left[P_{IT} - 4 \cdot \left(K/2 - 1\right) \cdot W\right]\right\}^{2}}{\Re}$$
$$A = \frac{L_{B} - \left(K/2 - 1\right) \cdot G}{\left(K/2\right)}$$
$$One \text{ DoF G=200 } \mu m$$
$$With \text{ LB=4mm}$$

K number of parallel arms along y

 $W = \left(A - G\right) / 2$

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Parameters for DC resistance evaluation

33

VALUES FOR R_{dc} EVALUATION

Parameter	Value			
Core Width W_C	W_{opt} (at $L_B = 4$ mm)			
Metal conductivity σ_M	3.25·10 ⁷ S/m			
Metal thickness t_M	3.2 µm			
Metal Width W_M	180 μm			
Metal stripe Length l_M	W _C			
Metal spacing s	20 µm			
Bonding wire diameter	32 µm			
Bonding wire conductivity σ_G	4.5·10 ⁷ S/m			
Bonding wire length l_{BW}	$\pi W_C / 2$			
Two bond wires in parallel for each metal stripe				

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

il presente materiale è riservato al personale dell'università di bologna e non può essere utilizzato ai termini di legge da altre persone o per fini non istituzional

Optimum Square Toroid vs Optimum Serpentine

Donomotor	Geometry			
Parameter	SSTC	Serpentine		
L _{MAX}	18.16 µH	26.6 µH	19.7 µH	
I _m	20.3 mA	17.4 mA	20.3 mA	
$f_{min} @ 1 V$	436 kHz	348 kHz	401 kHz	
L_{MAX} / R_{DC}	6.9 μH/Ω	$7.8~\mu H/\Omega$	6.9 μH/Ω	
e _M	236 pJ/mm 2	251 pJ/mm 2	251 pJ/m m ²	
W _c	0.83 mm	0.325 mm	0.325 mm	
Ν	48	142	122	
> $L_B^2 = 16 \text{mm}^2$	$\triangleright B_s = 1T$			

- > t_C $\mu_r = 10^{-1} \text{m}$ > $\mu_r = 10^5$
- $> n_0 = 5 \cdot 10^3 \text{ m}^{-1} > t_{\text{C}} = 1 \mu \text{m}$

- Serpentine: lower saturation current.

- Lowering the turn number in the serpentine in order to obtain the same I_m of the SSTC, allows in any case to have better performances of the SSTC

[9] A. Camarda et al. "Design Optimization of Integrated Planar Magnetic Core Inductors". IEEE Trans. Magn. 51.7, 2015, pp. 1–10.

l presente materiale è riservato al personale dell'università di bologna e non può essere utilizzato ai termini di legge da altre persone o per fini non istituzional

Evaluation of Inductor losses in a power converter

• Buck converter case:

$$R_{S} = R_{S}(f_{sw})$$
 but if $f_{sw} \leq f_{QMAX}$ then $R_{S}(f) \cong R_{DQ}$

 Given the same footprint area and same Δ*i*, Serpentine toroid can achieve a higher inductor performance wrt Optimized Toroid, up to:

$$1 - \frac{7.8 \mu H/\Omega}{6.9 \mu H/\Omega} = +13\%$$

Assuming the inductor losses a $\sim 10-15\%$ of the total losses, the power converter can experience an increased efficiency of 1.5%-2%

**assuming a laminated core, $R_s \approx R_{dc}$

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

resente materiale è riservato al personale dell'università di bologna e non può essere utilizzato ai termini di legge da altre persone o per fini non istituzional

Outline

> More than Moore systems

> Bond wire magnetics and example of applications

> Ferromagnetic LTCC

> Miniaturized bond wire transformer and applications

> Optimization of the inductance value

Conclusions

- Bond wire magnetics give additional value to MtM systems
- PwrSoC are thus possible using standard bondwire technology
- > No additional post-processing steps are required
- LTCC cores can be easily patterned and embedded (100% compatible with bonding wire technology)
- > LTCC material is good for the MHz range (good μ_r and high ρ_c)
- Through high resolution patterning techniques the inductance value can be augmented and optimized.

Thank you for your attention!!

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA • CAMPUS DI CESENA

il presente materiale è riservato al personale dell'università di bologna e non può essere utilizzato ai termini di legge da altre persone o per fini non istituzionai