October 3-5, 2016 International Workshop on Power Supply On Chip (PwrSoC 2016)

Monolithic integration of GaN power transistors integrated with gate drivers

October 4, 2016

Tatsuo Morita

Automotive & Industrial Systems Company Panasonic Corporation

Potential Application for WBG semiconductors

GaN power transistors are suited for high-frequency applications.

Advantages of GaN for Power device

- GaN inherently has superior material properties for Power switching device
- Unique feature of GaN is 2-Dimensional Electron Gas(2DEG) which serves both high electron density and high electron mobility

AIGaN/GaN Hetero-junction FET

- High sheet carrier density induced by polarization effects at the AlGaN/GaN hetero-interface without any doping
- GaN-FET can be fabricated on costeffective Si-substrates

Panasonic

Normally-on operation

Normally-off GaN Gate Injection Transistors - GIT -

Gate Injection Transistor (GIT)

Recovery characteristics

allasullig

Normally-off operation

- Vg=0V: p-AIGaN lifts up the potential at the channel.
- Vg>Vf: Hole injectction \rightarrow Electron generation \rightarrow Large Drain current

Very low RonQg

RonQg of 600V GIT is 0.7 Ω nC which is 1/13 of that of the latest SJ-MOSFET.

Good Recovery characteritics

GIT can be operated as a free-wheeling diode with very small charging current.

Power supply

Power converter have progressed with overcoming design trade-off among power density and efficiency, cost.

•To make more advanced, GaN-FETs have been actively investigated.

drivers reported on ISPSD14

For smaller POL converter

- Increasing frequency greatly helps to reduce the system size.
- Low RonQg power device and low parasitic inductance are key factors.

Panasonic

Advantage by increasing frequency

30V-class normally-off GaN-GITs

RonQg of developed 30V GaN-GIT is reached to 19.1mΩnC^{*1}.
 -> 36% smaller than that of reported Si-MOSFET^{*2}.

1.8	10.6	19.1	30

*1 H. Umeda, et al., PCIM2014

*2 S. Xu, et al., International Electron Devices Meeting (IEDM) Technical Digests, 145(2009)

Impact of the parasitic inductance

- Parastic inductance on power loop (L_{Power_Loop}) increase the spike voltage
 It limits di/dt and causes gate oscillation, increase noise.
- Parastic inductance on gate loop (L_{Gate_Loop}) increase the gate charging time.

This Work : GaN-based IC with gate driver

 GaN transistors and GaN gate drivers are integrated to a compact chip

Impact of Integration : Small Parasitic Inductances

Switching speed is increased by reduction of parasitic inductances

Impact of Integration : Small Parasitic Inductances

• Operation loss is reduced by the reduction of parasitic inductances.

Simulated operation loss

GaN Gate Driver : DCFL (Direct Coupled FET Logic)

• High power consumption in GaN gate driver of DCFL.

GaN Gate Driver : DCFL with Buffer Amplifier

• Low power consumption in GaN gate driver by buffer amplifier.

GaN Device Structure and Characteritics

• D-mode HFET and E-mode GIT are monolithically fabricated.

Device Structure

Device Characteristics

Operation Characteristics of GaN Gate Driver

• GaN gate driver is about 40% faster than Si gate driver.

Low Consumption of GaN Gate Driver

 Power consumption is reduced about 98.5% by using GaN DCFL with buffer amplifier.

GaN-based DC-DC Converter IC

Module layout with GaN-based IC

Operating Efficiencies of DC-DC Converter

 Peak efficiency of 88.2% is achieved with 12V - 1.8V DC-DC conversion at 2MHz

Analyzed operating loss of GaN-based IC

 Switching loss have been reduced 15% by using GaN-based DC-DC converter IC.

Summary

Compact GaN-based DC-DC Converter IC with High Speed Gate Drivers for Highly Efficient DC-DC Converters

GaN Gate Driver	DCFL with buffer amplifier	
	Monolithically fabrication of HFET and GIT	
	High speed switching (tr + tf = 12ns)	
GaN-based IC	5.1mm X 2.3mm Compact chip size	
	Peak Efficiency (12V-1.8V) : 88.2%@2MHz	

This work is partially supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan, under the Strategic Development of Energy Conservation Technology Project.

