

RF LDMOS/EDMOS: embedded devices for highly integrated solutions

T. Letavic, C. Li, M. Zierak, N. Feilchenfeld, M. Li, S. Zhang, P. Shyam, V. Purakh

Outline

- PowerSoc systems and product drivers
 - Systems that benefit from embedded power supplies also require ...
 - Ubiquitous wireless connectivity RF integration (802.11.54, BTLE, BT, WPAN, ...)
 - MCU + memory code, actuation, network configuration
 - IoT network edge node = miniaturized embedded power supply and RF link
- PowerSoC and RF device integration strategies
 - 180nm bulk-Si mobile power management process LDMOS
 - 55nm bulk-Si silicon IoT platform EDMOS
 - DC and RF benchmark to 5V CMOS
- Power and RF application characterization
 - ISM bands, WiFi, performance against cellular industry standards.
 - Embedded power and RF with the same device unit cell

Summary – PowerSoc and RF use the same device unit cell

Embedded power and RF: Envelope Tracking

https://www.nujira.com

- RF supply modulation to reduce power dissipation (WiFi, 4G LTE)
 - Linear amplifier: $5V_{pk-pk}$ 80 MHz BW, >16QAM -> fT > 20 Ghz
 - SMPS: > 10-20 MHz f_{sw} , 5-7 V FSOA, ultra-low $R_{sp}^*Q_{gg}$ FOM
- Optimal solution fT/fmax of cSiGe/GaN/GaAs with Si BCD voltage handling
 RF LDMOS and RF EDMOS are challenging the incumbents

Motorola eg. US 6,407,634 B1, US 6,617,920 B2

Embedded Power and RF: IoT Edge Node

Semtech integrated RF transceiver SX123SX

• Wireless IEEE 802.15.4, IEEE 802.11.ah, 2G/3G/4G LTE MTC,

- 50 B connected endpoints 2020 (Cisco Mobility Report Dec 2016)
- Integrated low power RF modem + PA, SMPS, MPU + digital control
- ISM to 2.4 GHz, P_{out}= 20-22 dBm, 0.3-1 Mbps, V_{supply} = 3.3V 5V

Integration options: RF + AMS or RF + DBB - lowest power key

IoT RF Landscape

	W-PAN	W-LAN	W-WAN	W-MAN	
	Short and Near		Wide and Long		
Standards/ Protocol [Proprietary] [Standard] [In development]	Ant+ RFID, NFC (802.15.1)/BTClassic (802.15.1)/BTSmart 802.15.4/RFCE M-Wireless	Z-Wave, EnOcean 802.15.4/ZigBee/SEP2/HA RT/6Tisch/Thread 802.11b/g/n/ac/WiFi Bluetooth/Classic/ Smart BLE MESH	GSM/GPRS DECT-ULE 802.15.4/WiSUN 802.11ah EC-GSM LTE-NB IoT LTE-Cat M	LPWAN (LoRA (Prop) SigFox (prop) AMI/Metering (Prop)) GPS/GNSS 2G/3G LTE 5G	
Spectrum	ISM (Sub-GHz, 2.4GHz)	Licensed ISM (Sub-GHz, 2.4Ghz, 5.8Mhz)	Licensed ISM (Sub-GHz, 2.4Ghz)	Licensed ISM (Sub-GHz, 2.4Ghz)	
Range	<30M	30M+ P2P, Meshing	KMs	10's KM's	
Coverage (size, topology)	Point –to-point, Star Small <10 nodes	Star, Mesh <1000 nodes	Cellular, meshing, star Large, 10K+ nodes	Cellular, meshing, star Large, 10K+ nodes	
Power (battery life)	Consumer: Daily Industrial meter: 10yr	Consumer: 2 years Industrial: 10 year	GSM/GPRS: Daily 10 year goal	LTE: Daily Industrial: 10 year	
Data rate	Low <50kbps BTC <1Mbps Audio	Low <50kbps WiFi 11Mbps (video)	Low (70kbs) to Medium 1Mbps	Low (<50kbps) to High (1Gbps)	
Latency	High Latency Audio medium QoS	High Latency Video needs high QoS	Medium Latency	5G Mission Critical Cellular data/ Video high QoS	
Complexity	Simple	802.15.4 moderate WiFi Complex	Complex	Complex (Cellular) Simple (star)	

PowerSoC and RF: fT vs BV paradigm

Low dissipation RF for mobile and IoT – expanding power industry
 1.5-1.8V RFCMOS has the speed but not V_{rated} – stacking reduces fT !
 5V RFCMOS has V_{rated} but not the speed – limited by I_{eff} (R_{sp}*Q_{gg})

RF LDMOS and RF EDMOS – fT of 1.8V CMOS with BV_{ds} >> 5V CMOS

180nm RF LDMOS

Concept, fabrication, characterization

180nm Si RFLDMOS: device concept

- RFLDMOS LATID drain and self-aligned channel for fT*BV_{ds}
 - Dual dielectrics for g_m and GIDL (BTBT) control, diffused drain reliability (not EDMOS)
 - LATiD drain *prior* to PC gate, LATid body *post* PC gate (+2ML over 5V CMOS)
 - Tapered field plate structure for linearized $E_x(x)$ in the drift region
 - 30A 130A, 50A 480A

180nm RF LDMOS: On-state simulation

Self-aligned channel LATiD drain LDMOS – device pitch < 1μm
 – Co-implants: 10-30` 10¹² – 10¹³, dual 1.8V/5V oxide, < 1μm pitch

- Device on-simulation V_{gs}=1.8V, V_{ds}=500mV, V_b=V_{iso}=0V
 - Left: potential contour channel dominant, $I_{eff} < 0.18 \mu m$
 - Right: current contour deep drain conduction away from surface

180nm RF LDMOS: Off-state simulation

Device of-simulation ($V_{ds} \sim 7V$, $V_{gs} = V_b = V_{iso} = 0V$)

- Left: equipotential contour (no channel PT)
- Right: current density, peak near silicided drain, current BTBT limited

Net: $I_{eff} = 0.18 \mu m$ with $BV_{ds} > 11 V - a$ good RF PA and embedded power device

180nm RF LDMOS: measured results

DC and RF characteristics

- Left: Fwd IV, $I_{body} \sim 1\% Id_{max} @ 5V$, $I_{eff} \sim 0.17 um$
 - R_{sp} = 0.95 mOhm mm², BV_{ds} = 11.4V

Right: fT vs I_{ds} , fT_{peak}~ 48 GHz (V_{ds}=0.5V), fT_{min}=20 GHz (V_{ds}=0.5V) BV*fT = 563 V GHz

180nm Si RF LDMOS: tabulated results

		RFLDMOS		CMOS	
		5V NFET	5V PFET	5V NFET	5V PFET
Parameter	Units				
Vt(0.1V) (peak gm)	mV	525	460	610	565
Vt(1.5V)	mV	480	450		
Vt(5V)	mV	450	440	525	445
Idsat(5V)	uA/um	520	225	630	350
loff	pA/um	10	10	1.5	2.2
Peak f _T (Vds=500mV)	GHz	20	5		
Peak f _T (Vds=5V)	GHz	45	16	15	11
Ronsp	mohm-mm ²	0.95	3.6	2.16	5.36
BVds(I₀=10nA/um)	V	9.9	9.3	8.0	9.5
Gate Charge Q _{gg}					
(Vgs=1.8V,					
Vds=Vds _{NOM}) ON	fC/um	8.16			
Switching FOM					
Q _{gg} *Ron (Vgs=1.8V,					
Vds=)	pC-ohms	8.3		18.9	
GIDL Current (B2B)					
(Vgs=0V, Vds=Vds _{NOM})	pA/um	0.1	0.5		
VBD (Id=0.1um/um)	V	11.4	9.9	8	9.5
VB2B (lb=100pA/um)	V	9.1	7.6		

RF LDMOS vs 5V CMOS

3X improvement in fT, 2.3X reduction in R_{sp}, 2.3X reduction in R_{sp}*Q_{gg}
 The same device unit cell used for DC-DC SMPS and RF PA

180nm Si RFLDMOS: process control

■ RFLDMOS I_{off} vs Vt_{sat}, I_{off} vs BV_{ds}

Channel length variation through process and layout

• $V_t = 0.45 \text{ V} + - 0.1 \text{V}$ sufficient to control I_{off}

55nm ED NMOS

Concept, fabrication, characterization

55nm RF EDMOS Design Concept

Key Focus on device optimization:

- Utilize the resolution of 55nm lithography (dimensions and overlay)
- Minimize effective channel length by engineering pocket implant (similar solution as RF LDMOS)

55nm 5V ED-NMOS DC Characteristics

- 55nm RF EDMOS I_{ds} vs V_{ds}, FSOA
 - = BV_{ds} =10.5V, R_{dson} =0.97 mohm mm², Id_{sat} =750 μ A/ μ m I_{off} =0.3pA/ μ m
 - Rated voltages V_{gs}=3.3V, V_{ds}=5V (green box)
 - Super-linear conduction characteristic ideal for PA
 - Demonstrated scalable to rated voltages in excess of 10V V_{ds}

RF Characteristics of 55nm EDMOS

RF EDMOS fT vs I_{ds}, fT*BV_{ds}
 BV_{ds}=10.5V, fT=56GHz, BV*fT = 580 VGHz

Ref 1. RFIC.2008.4561404, pp 141-

Ref 2. ISPSD May 2015, pp 337-340

55nm Platform for IoT RF integration

55nm LPx RF EDMOS and CMOS

1.2V CMOS core for digital, MCU, embedded memory

1.2V with fT of 180GHz for LNA, VCO, PLL in a RF analog TRX

5V EDMOS (BV 10.5V) fT = 56GHz for ET and RF PA in an IoT platform

55nm 5V ED-NMOS HCI Characteristics

- RF EDMOS HCI
 - Power law dependence t^{0.25} typical for DMOS structure single trap mechanism
 - Time to half-population fail >> 100yrs for both maximum substrate current and maximum rated voltage stress

RF Benchmarking and Standards

Design, characterization, standards

Si RF LDMOS: Application test benches

SMPS

ET - quantify driver efficiency (75% reduction in driver dissipation)

RF PA

Matched 2.5 GHz/ 5.8 GHz RF PA for load-pull analysis

Si RF LDMOS: 5.8 GHz RF PA

RF power cell layout and load pull to 5.8 GHz – a linearity study

- 20MHz 64QAM modulation (HB WiFi), matched PA
- Left RF P_{out} vs P_{in}: 19dBm PA with > 70% PAE (saturated)
- Right RF AM/PM phase distortion < 3%

RFLDMOS device performance similar to SiGe, GaAs

Si RFLDMOS: 5.8 GHz RF PA

RFLDMOS PA linearity

- A measure of adjacent channel power coupling nonlinear C(V)
- P_{in} = 8 dBm (10 dBm back-off) for high peak-to-average power
- PA meets IEEE 802.11n 20 MHz mask specification

"raw" performance – no digital pre-distortion

Si RFLDMOS: PA Comparison

2.4 GHz RF PA Comparison								
Technology	Vcc	Pout	Gt_1	Freq	PAE			
	(V)	(dBm)	(dB)	(GHz)				
RFLDMOS 2mm	3.5	25.6(1dB)	17.6	2.4	68%(1dB)			
RFLDMOS 4mm	3	27.5(sat)	14	2.4	72%(sat)			
130nm SOI CMOS *	6.5	32.4(sat)	14.6	1.9	47%(sat)			
65nm EDMOS **	5	30	25	2	60%(sat)			

RFLDMOS 2.4 GHz RF PA

- Highest efficiency at lowest supply voltage
- High single stage gain easier layout without inter-stage matching

* Pornpromlikit et al., IEEE MTT vol 58 pp 57-64 2010 ** Aposolidou et al., IEEE RFIC p 148, 2008

24

Si RF LDMOS and SOI EDMOS

5.8GHz

- 130nm SOI EDMOS
- V_{dd}=3.5V, Id=40mA, w=2mm

■ 5.8GHz

- 180nm bulk Si LDMOS
- V_{dd}=3.3V, Id=10mA, w=2mm

High-band WiFi PA

- Load pull measurement
- PAE for SOI EDMOS and bulk LDMOS is similar
- Gain of SOI device is higher (16dB vs 10dB @ P_{out}=20dBm)
- Bulk and SOI are meet RF integration targets – SOI has slightly better AM/PM at P_{out}>15dBm

Summary

- PowerSoC and RF devices can be integrated using the same device unit cell
- 180nm RF LDMOS and 55nm RF EDNMOS
 - Both structures have pitch $<1\mu$ m and:
 - $-R_{sp} < 0.95 \text{ mOhm mm}^2$, BV_{ds}>10.5V, fT>50 GHz (>10x HB WiFi)
 - Ideal PowerSoc implementation scenarios:
 - 180nm RF LDMOS 5V SMPS 2.3X lower P_{diss}, 75% lower gate driver loss
 - 55nm RF EDMOS IoT platform with integrated RF, MCU, memory and control
 - 5V CMOS should be replaced by asymmetric LD/EDMOS
 - Asymmetric methodology scalable to >10V rated structures <55nm nodes
- Measured RF results against wireless specifications
 - 5.8 GHz PA meets/exceeds IEEE 802.11n (802.15.4, 802.11.ah)
- LDMOS/EDMOS fabricated in high-volume foundry
 - LDMOS manufacturable
 - EDMOS reliable

Thank you

The information contained herein is the property of GLOBALFOUNDRIES and/or its licensors

This document is for informational purposes only, is current only as of the date of publication and is subject to change by GLOBALFOUNDRIES at any time without notice.

GLOBALFOUNDRIES, the GLOBALFOUNDRIES logo and combinations thereof are trademarks of GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. Other product or service names are for identification purposes only and may be trademarks or service marks of their respective owners.

© GLOBALFOUNDRIES Inc. 2016. Unless otherwise indicated, all rights reserved. Do not copy or redistribute except as expressly permitted by GLOBALFOUNDRIES.