Towards Fully Integrated Power Management

Jeffrey Morroni
General Manager – Kilby Power R&D
Texas Instruments
The Power Management End-Game

Invisible → 100% Efficiency, 0 Volume
Easy-to-Use → Complete power management in 1 chip, no EMI

Power Supply On a Chip

Devices
- Conduction Losses
- Charge Losses

Passives
- Magnetics
- Capacitors

Parasitics
- Device Ringing – IV Overlap
- Reverse Recovery
Typical Loss Breakdown – Buck Converter

Conduction
- IV- Overlap Losses: 37%
- 26%
- 21%
- 16%

Device Switching Losses
- Overlap
- quil/diode
- switching
- conduction

Topologies Can Improve Upon Some or All of the Above
Topology Classes

<table>
<thead>
<tr>
<th>Standard Converters</th>
<th>Hybrid Converters</th>
<th>Resonant Converters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **✓ Simple and proven**
- **✓ Low Cost**
- **✗ Hard Switched**
- **✗ Full VIN rated devices**

- **✓ Reduced Device Voltage Stresses**
- **✓ Reduced Energy Storage In Inductors**
- **✗ Hard Switched**
- **✗ Additional Component(s)**

- **✓ Reduced or eliminated switching losses**
- **✓ Majority of energy storage still in L**
- **✗ Additional Component(s)**

TI Information

Texas Instruments
Hybrid Converter Example

- **Advantages**
 - More energy storage in caps, less in inductors
 - Lower switch ratings and stress
 - Smaller current ripple

- **Disadvantages**
 - Added component
 - Duty cycle limitation

[Nishijima, 2005]
[Shenoy], 2015

17x smaller footprint
34X smaller volume
Hybrid Converter Example

- \(V_{IN} \) – VC Applied to \(L_1 \)
- \(V_C \) charged through phase 1 path
- \(L_2 \) current decreases

[Nishijima, 2005]
[Shenoy], 2015
Hybrid Converter Example

- Current in both inductors decreases
- No current flowing through V_c

[Nishijima, 2005]
[Shenoy], 2015
Hybrid Converter Example

- \(L_1 \) current decreases
- \(V_C \) Applied to \(L_2 \) → Becomes Phase 2 source
- \(L_2 \) current increases

[Nishijima, 2005]
[Shenoy], 2015
Hybrid Converter Example

- Current in both inductors decreases
- No current flowing through V_c

[Nishijima, 2005]
[Shenoy], 2015
Hybrid Converter Example

- Capacitor Voltage and Inductor currents naturally balanced
- More energy storage in the capacitor, less in inductors
- Device rated for $V_{IN}/2$
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation
Advantages – Capacitors vs. Inductors

- Capacitor Voltage and Inductor currents naturally balanced
- More energy storage in the capacitor, less in inductors
- Device rated for $V_{IN}/2$
- Hard Switched
- Additional Component(s)
- Duty Cycle Limitation
Rsp Advantages

- Capacitor Voltage and Inductor currents naturally balanced
- More energy storage in the capacitor, less in inductors
- **Device rated for** $V_{IN}/2$
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation

* B. El-Kareh, L. Hutter, "Silicon Analog Components"

~8V Rated
~0.1mΩ-mm2

~16V Rated
~0.6mΩ-mm2

- Enables Smaller Die Area -- $$ Savings
FOM Advantages

- Capacitor Voltage and Inductor currents naturally balanced
- More energy storage in the capacitor, less in inductors
- Device rated for $V_{\text{IN}}/2$
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation

- ~8V Rated
- ~16V Rated

• ~3x-5x better FOM in this example
CV² and I-V Overlap Losses

- **Hard Switching Losses Reduced**
 - 1/2CV²
 - V/2 and C decreases w/FOM improvements
 - IV Overlap – \(\frac{1}{2} V_{\text{IN}} I_L t_r \)
 - Assume same DV/DT and DI/DT as a Buck
 - \(t_r \) halves, 2x more transitions,
 - 1/4 the transition losses

- Capacitor Voltage and Inductor currents naturally balanced
- More energy storage in the capacitor, less in inductors
- **Device rated for** \(V_{\text{IN}}/2 \)
- X Hard Switched
- X Additional Component(s)
- X Duty Cycle Limitation
Buck Converter vs. SC Buck

- IV- Overlap Losses: 37%
- Device Switching Losses:
 - Overlap: 26%
 - qrr/diode: 21%
 - Switching: 16%

Conduction

Texas Instruments
Adding It All Up

- Dramatic Size Reduction
- Efficiency the same or better than comparison points
- Major downside of duty cycle limitations
Topology Classes

<table>
<thead>
<tr>
<th>Standard Converters</th>
<th>Hybrid Converters</th>
<th>Resonant Converters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **✓ Simple and proven**
- **✓ Low Cost**
- **X Hard Switched**
- **X Full VIN rated devices**
- **✓ Reduced Device Voltage Stresses**
- **✓ Reduced Energy Storage In Inductors**
- **X Hard Switched**
- **X Additional Component(s)**
- **✓ Reduced or eliminated switching losses**
- **✓ Majority of energy storage still in L**
- **X Additional Component(s)**
Resonant Converter Example

Resonant Converter Example

- Typical Buck Operation
- Inductor current slews down
Resonant Converter Example

- Q2 remains ON holding switched node at ground
- SAUX turns ON ramping up current in LAUX
- Once AUX current is greater than L current, Q1 Coss conducts
Resonant Converter Example

- Turn ON Q1 with ZVS
- LAUX current ramps down to zero after which SAUX is turned off
Resonant Converter Example

- Q1 conducts remainder of interval as in typical buck converter
Resonant Converter Example

- ZVS turn on of Q₁
- ZCS turn off of \(S_{\text{AUX}} \)
- No I-V turn on losses for Q₁

X Added conduction losses for \(S_{\text{AUX}} \)
X Added die area for \(S_{\text{AUX}} \)
X Extra component losses
Analysis and Comparison

Loss Breakdown

<table>
<thead>
<tr>
<th>Loss Breakdown</th>
<th>Buck (1MHz)</th>
<th>ZVT (1MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond. Loss $L + L_{AUX}$</td>
<td>1.0x</td>
<td>~2.3x</td>
</tr>
<tr>
<td>Q_{OSS}</td>
<td>1.0x</td>
<td>0.5x</td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>1.0x</td>
<td>0x</td>
</tr>
<tr>
<td>IV-Overlap (ON)</td>
<td>1.0x</td>
<td>0x</td>
</tr>
<tr>
<td>IV-Overlap (OFF)</td>
<td>1.0x</td>
<td>1.0x</td>
</tr>
<tr>
<td>D_{RR} Cond.</td>
<td>1.0x</td>
<td>0.2x</td>
</tr>
<tr>
<td>P_{GATE}</td>
<td>1.0x</td>
<td>1.2x</td>
</tr>
<tr>
<td>P_{TOT}</td>
<td>1.0x</td>
<td>0.96x</td>
</tr>
</tbody>
</table>

Vs. 20% Smaller Die
Buck Converter Vs. ZVT

- Conduction: 26%
- IV- Overlap Losses: 37%
- Device Switching Losses:
 - Overlap: 21%
 - qrr/diode: 16%
 - QRR: 21%
 - Conduction: 26%
Opportunities

- If cost is a non-factor (usually isn't), large efficiency gains possible
- Other main challenge → The Magnetic element
 - Conduction Losses
 - Core losses
 - Cost
 - Size

Vs. 20% Smaller Die
Summary

New Topologies offer opportunity to move towards full power supply on a chip
Options and alternatives with various pros and cons

Still need improvements on:
- Inductor integration
- Capacitor integration
- Better FETs
- Better packages
Questions