

CAD Tool for the optimization of Power Converters on Chip

Jesús A. Oliver, Pedro Alou and José A. Cobos

PWRSoC 2016 Madrid

Universidad Politécnica de Madrid

The need of an integrated multi-domain tool

State of the art CAD Tools

Circuit Level Simulators

Magnetic Component Optimization Tools

PEXprt-Pemag developed by UPM

Lack of integrated design environment for Power Systems on Chip

General Purpose Math Tools

System Level Analysis and Optimization Tool

POLITÉCNICA

Built-in Simulator

Steady-state and transient

Loop Gain PWRSoC 2016 Madrid

System level performance

Open loop vs closed loop Zout

Example: HI-Side (LV-DC-DC)

E_{TurnON} **E**_{DRIVER} **E**_{TurnOFF} 1.2 1 E_{LOSSES} [nJ] 0.8 0.6 0.4 0.62 nJ 0.78 nJ 0.2 0.16 nJ I, I₁ -0.2 400 700 0 100 200 300 500 600 800 I_{DS} [mA] 700 1 600 500 İ_{PMOS} [mA] 400 300 I₀ 200 100 0 -100 0.2 0.4 0.6 0.8 0 1 t/T_{sw}

PMOS Switching Losses

f_{sw} = 10 MHz

P _{TurnOFF}	= 7.86 mW
P _{TurnON}	= 1.6 mW
P _{Driver}	= 6.25 mW
I _{PMOSrms}	= 186.2 mA
I _{PMOSrms} R _{PMOSon}	= 186.2 mA = 410 mΩ

PWRSoC 2016 Madrid

LV DC-DC Optimization Results

Geometry Parameters	Name	Value
Total area	A _T	3.2 mm^2
Number of turns	Ν	4
Core thickness	T _{core}	5.15 μm
Core width	W _{core}	292.79 μm
Core height	H _{core}	75.3 μm
Core length	L _{core}	2993.84 μm
Copper width	W _{cu}	45.62 μm
Copper thickness	T _{cu}	35 µm
Vertical spacing	H _{air}	15 µm
Horizontal spacing	W _{air}	20 µm
Distance between cores	D _{core}	0.35 mm
Electrical Parameters		Value
L (analytical)		270 nH
L (FEA tool)		268 nH

	Сар	ESR	area
C _{IN}	300 nF	17.5 mΩ	1.5 mm^2
C _{OUT}	200 nF	11.7 mΩ	1 mm ²

	Width	Length	R _{ON} (V _{GS} =5V)	R _{ON} (V _{GS} =3.3V)	I _{Drive}
PMOS	12 mm	650 nm	$406.7 \text{ m}\Omega$	530.9 mΩ	80 mA
NMOS	P12:08 mm 2	01560[nmrid	114.5 mΩ	142.4 mΩ	80 m🍂

LV DC-DC Optimization Results

Evaluation of the Impact of technology

System Level Optimization electrical performance

600 10800 4000 101200 101400 10 1600

V_{OUT} [mV]

FEA Modeling/Validation of Coupled Inductors

Option A: Maxwell 3D simulations

PARAMETERS

Geometry Parameters	Name	Value
Total area	A _T	xx mm ²
Number of turns	Ν	4
Core thickness	T _{core}	6 µm
Core width (Inductor)	W _{corel}	157 μm
Core width (Transformer)	W _{corel}	187 µm
Core height	H _{core}	127 μm
Core length	L _{core}	1.00 mm
Copper width	W _{cu}	50 µm
Copper thickness	T _{cu}	35 µm
Vertical spacing	H _{air}	15 µm
Horizontal spacing	W _{air}	15 µm
Distance between cores	D _{core}	264 µm

Material parameters	Value
Resistivity core	45 μΩ*cm
Relative Permeability core	280
Resistivity copper	1.71 μΩ*cm

11

 $L_{Analytical (simple)}L_{Analytical}$ $L_{M} = 21.14 \text{ nH}_{(complex)}$ $L_{K} = 31.34 \text{ nHL}_{M} = 21.82$ $nH \qquad PV$ $L_{K} = 41.03$

L _{FEA} L_M = 22.18 nH L_K = 43.47 nH

PWRSoC 2016 Madrid

200 MHz Single Inductor (33nH)

Simulation Results

Total converter efficiency 83% PWRSoC 2016 Madrid

100 MHz Coupled Inductors (47nH)

Simulation Results

PowerSWIPE	L (nH)	Core	Core	Copper	Copper	DCR	Device
ITVs		Thickness	Length	width	Thickness	(Ohm)	Footprint
ITV 2B	47 Coupled (k=0.4)	1.6 μm	1.78 mm	50.62	15 μm	0.3425	2 mm ²

Total converter efficiency 81% PWRSoC 2016 Madrid

100 MHz Coupled Inductors (35nH) + Single Inductor (20nH)

Simulation Results

Coupled Inductor Comparison

Comparison single-phase and two-phase dc/dc converter

	Inductor design	Freq. (MHz)	L (nH)	Coupling factor	Efficiency (magnetics)	Efficiency (IC)	Total efficiency
ITV2a	Single phase	200	33		95,5 %	87,4%	83%
ITV2b	Coupled	100	45	~0.4	90%	90,4%	81%
ITV2c	Coupled +Lout	100	35+21	>0.8	85.6% (90.25%·94.8%)	90,4%	77%

PWRSoC 2016 Madrid

Conclusions

1st Integrated multi-domain optimization tool for PwrSoC

POLITÉCNICA

Physical Design

