A High Density Series Capacitor Buck Converter

A low profile 10A voltage regulator achieving 1.25 kW/in³ power density and over 300kHz bandwidth

Pradeep Shenoy, Kristen Parrish, and Chuck Devries

Series Capacitor Buck Topology

Two-phase, series cap buck converter

- ✓Benefits
 - ✓ Single conversion stage
 - ✓ Switching at reduced V_{ds}
 - ✓ Series cap soft charge/discharge
 - ✓Automatic current balancing
 - ✓ Duty ratio doubled
- Drawback
 - 50% duty cycle limitation
 - Theoretical: $V_{IN,MIN} = 4 \times V_{OUT}$
 - Practical: $V_{IN,MIN} = 5 \times V_{OUT}$

P. S. Shenoy, M. Amaro, J. Morroni and D. Freeman, "Comparison of a Buck Converter and a Series Capacitor Buck Converter for High-Frequency, High-Conversion-Ratio Voltage Regulators," *IEEE Trans. Power Electron.*, vol. 31, no. 10, pp. 7006-7015, Oct. 2016.

Steady-State Operation: Interval 1

 $C_t V_{swa} L_a$ Q_{1a} Current (A) Vo $Q_{2\epsilon}$ 0 V_{swb} L_b Q_{1b} Q_{2b} 0.6 0 0.2 0.4 Time (µs) Series cap voltage (differential) Switch node voltages 6.2 8 V_{Ct} 6.15 Voltage (V) 6.1 Voltage (V) 6.05 5.95 SWAV_{SWB} 5.9∟ 0 0.2 0.4 0.6 -2₀ 0.2 0.4 0.6 Time (µs) Time (µs)

🦊 Texas Instruments

Inductor & series cap currents

Steady-State Operation: Interval 2_{Inductor & series cap currents}

🜵 Texas Instruments

Steady-State Operation: Interval 3_{Inductor & series cap currents}

🜵 Texas Instruments

j, **TEXAS INSTRUMENTS**

Reference Design PMP15008

"Tiny, Low Profile 10 A Point-of-load Voltage Regulator"

Board Image

Total solution size is 135mm² and 1.25mm tall

Current Density Comparison

Series Cap Buck: **1.2 mm height** TPS54A20

Conventional Buck: 4.8 mm height

En.

Current density of over 60A/cm³ and power density of 1.25kW/in³

Efficiency and Power Loss

2 MHz per phase, $1.2V_{OUT}$, room temperature, no air flow, two layer board

Over 90% efficiency at 9V input, less than 3W loss at full load

Thermal Image

Less than 35 deg. C temp rise at 12V input, 8A output

Load Transient Response

2% variation in V_{OUT} during 5A load change

High Bandwidth and Ample Phase Margin

Bode plot taken with 12V input, 5A output

