Advances in Integrated Magnetics for High Frequency Power **Conversion Applications**

Ricky Anthony^{†, ‡}, James F. Rohan[†] and Cian O'Mathúna^{†, ‡}

⁺ Micro-Nano Systems Centre, Tyndall National Institute, University College Cork, IRE [‡]Electrical and Electronics Engineering, University College Cork, IRE (Email: ricky.anthony@tyndall.ie)

Introduction

- Increase in DC-DC converter frequencies have enabled passive magnetic components to be **fabricated on silicon** (< 2 mm² foot print area).
- Windings and Core -losses reduce the efficiency of these devices.

Evolution of Power Supply on Chip (PwrSoC) Technology					
Frequency	5 MHz		8 MHz	> 20 MHz	> 50 MHz
Year	2005		2008	2012	2016
Z ↓ C	IC	L	C IC L	C L	
Height	< 1 mm	L I	< 1 mm	< 0.8 mm	< 0.6 mm
С	IC	L	C IC L		ç Ic
Discrete Components (IC, Capacitor and Inductor) on PCB			Co-packaged IC +L Discrete C	Stacked IC +L Co-packaged C	Stacked IC +L +C

Possible solutions ?

(a) High aspect ratio micro-windings. (b) Resistive & Ultra soft magnetic films (c) Magnetic laminations.

agnetic core insulator II race-track shaped Cu windings silicon substra

I. High-Aspect-Ratio & Resolution Windings

High-aspect-ratio (17:1) and resolution (5 µm) process

Fabricated windings with 5 µm gap with THB-151N.

III. Magnetic Laminations

Soft to Ultra-soft Transformation

Grain Size (nm)

European Union **European Regiona Development Fund**

IV. Tyndall Micro-Inductors

Ungapped and Gapped racetrack inductors Ferrite-core inductors Summary

- HAR and density micro-windings.
- Variable and ultra-soft core.
- Nano-laminated cores (electrochemical and sputtered).

[1] R. Anthony et. al., *J. Micromech. Microengg.*, 26 (2016). [2] R. Anthony et. al., *Appl. Surf. Sci.*, 357 (2015). [3] R. Anthony et. al., *J. Magn. Magn. Mater.*, 406 (2016).

* Confidential- Cannot be disclosed