Design and Fabrication of Air-core Inductors for Power Conversion

<u>Hoa Thanh Le</u>^{*a, b*}, Io Mizushima ^{*c*}, Peter Torben Tang ^{*c*}, Ziwei Ouyang ^{*b*}, Arnold Knott^{*b*}, Flemming Jensen ^{*a*}, Anpan Han^{*a*} ^{*a*} Danchip, ^{*b*} DTU Elektro Tech. Uni. Denmark, ^{*c*} IPU, Kgs. Lyngby, Denmark. *e-mail*: <u>anph@dtu.dk</u>

DTU Danchip National Center for Micro- and Nanofabrication

PwrSoC Inductor

- CMOS-compatible
- **G** Small footprint ($\sim 1-2 \text{ mm}^2$)
- High frequency (30–300 MHz)
 - Losses caused by eddy current effects
 - Electromagnetic inteference (EMI)
 - Q > 10, 1-100 nH, 1-2A

Eddy current effects

Skin effect Proximity effect

Our Aims

- □ 2D & 3D inductor for PwrSoc
 - Spiral
 - Solenoid
 - Toroid for low EMI
 - Transformer
 - Universal core geometry
 - Custom inductor design
- TSV & footprint
- CMOS compatible
- Robust

Inductor Modeling

- □ Inductance and resistance are frequency dependent due to eddy current effects.
- \Box Indutance L = L_{external} + L_{internal} Equations:

Rectangular conductor current density (J_{τ})

$$J_{z}(x,y) = C \cdot Cosh(k(z) \cdot x)Cosh(l(z) \cdot y)$$

$$L = \frac{N^{2}h\mu_{air}}{2\pi}ln\left(\frac{R_{o}}{R_{i}}\right) + \frac{R_{o} + R_{i}}{2}\mu_{0}\left[ln\left(8 \cdot \frac{R_{o} + R_{i}}{R_{o} - R_{i}}\right) - 2\right] + \frac{\mu_{0}}{2}\frac{\iiint|\mathbf{H}|^{2}d\mathbf{V}}{\iint|\mathbf{J}|\mathbf{S}|\mathbf{S}|}$$

$$R_{AC} = 2\rho\frac{\iiint|J|^{2}dV}{\iint|J|^{2}dV} \quad \nabla \times J = -\rho\mu_{0}\frac{\partial H}{\partial t} \quad Q = \frac{Im(Z)}{Re(Z)}$$
Geometry coordinate

W(z)

Х

Modeling Results

Comparison of calculated and simulated results. (a) Q, L and (b) R_{AC} versus frequency.

DTU

Inductor Design Guideline

Fabrication Process

Fabrication Process

Fabrication Results

Toroidal inductor

Tranformer

Solenoid

Spiral

"DTU" inductor

Fabrication Results

4 mm

Characterization

Preliminary results

DTU

Toroidal inductor is wirebonded on PCB test board (N=20, $R_0=1 \text{ mm}$, $R_i=0.5 \text{ mm}$)

Temperature Rise

DTU

$$I_{fusing} = 5.5A$$
$$(R_{DC} = 0.52 \Omega)$$

Design of 100 MHz Class E Inverter

Conclusion

Inductor Modeling

- f-dependent L_{internal}, R_{AC}
- COMSOL
- Design guideline

Fabrication Process

- CMOS-compatible
- Cu-Si robust
- 2D & 3D air-core inductors
- Through-Si Vias

Customized Inductor

- Number of turns
- Inner & outer radius
- Specs

Given Future Works

- Test on SMPS
- Packaging
- Magnetics

Acknowledgement

DTU Danchip National Center for Micro- and Nanofabrication

DTU Electrical Engineering **Department of Electrical Engineering**

IPU

Fund No. 67-2014-1

TinyPower