A Dual-Mode Driver IC for Depletion-Mode GaN HEMT

Matthias Rose¹, Yue Wen², Ryan Fernandes², Ralf Van Otten¹, Henk Jan Bergveld¹, and Olivier Trescases²

> ¹NXP Semiconductors, Eindhoven, Netherlands ²University of Toronto, Toronto, Canada

Introduction

- 600 V GaN High Electron Mobility Transistors (HEMT) have superior properties, compared to Si superjunction transistors.
 - For the same R_{DS(on)}.
 - Lower Q_g and Q_{OSS}.
 - Fast body diode with a cascode low-voltage MOSFET.
 - Enable higher switching frequency (f_s), which reduces passive component sizes.
- Potential application:
 - Power Factor Correction (PFC).
 - Achievable f_s with Si devices: 40 kHz ~ 200 kHz.
 - Large passives (PFC inductor and EMI filters).

NXP TEA1716DB1255 90 W notebook adapter demo board.

Introduction

FIG 2 Yole's report suggests that automakers will begin to adopt GaN power devices in inverters, dc–dc converters, and onboard chargers, generating revenue of US\$150 million by 2020. POL: point of load. (Figure courtesy of "Power GaN Market" report, Yole Développement, July 2014.)

NXP GaN HEMTs

Si-fab compatible

•

Fabricated in a Standard Si-Production Fab," in CS MANTECH Conference, 2013.

Cascode Drive (CD)

- Popular technique to achieve normally-off characteristic.
- Gate of the GaN HEMT (GH) is tied to the source of the MOSFET.
- A conventional MOSFET driver can be used.
- The Low-Voltage (LV) MOSFET body diode acts as the body diode of the cascode device.

HEMT Drive (HD)

- Directly drive the GaN HEMT with a negative gate swing.
- Requires a negative supply voltage.
- LV MOSFET is still needed to turn off the current path if the negative supply voltage is absent (during power down).

٠

Proposed HEMT driver IC

Commercially available cascode GaN devices:

- This work focuses on:
 - Integrated dual-mode driver w/ the cascode device .
 - Integrated digital current-mode control.
 - Co-package the GaN HEMT die and driver/controller die.

Proposed HEMT-Drive (HD) Mode

- Programmable current-mode driver with inverted active bootstrap + charge pump.
 - GaN HEMT gate (GH) is switched to -3.3 V to turn it OFF. ٠
 - LV MOSFET is always ON during normal operation. ٠
- An external $C_{s/ope}$ is used to achieve active slope control, to control/reduce EMI.

HEMT driver with Slope Control

Conventional Cascode-Drive Mode

 In conventional cascode-drive (CD) mode, the interconnection between GaN HEMT and the MOSFET (V_{xn}) may reach breakdown voltage of the MOSFET.

30-V breakdown

• The proposed CD mode driver addresses the concern.

Proposed Cascode-Drive (CD) Mode

- Adding D_1 and ZD (10 V Zener diode) to the output of the MOSFET driver.
- D_1 blocks GM from V_{xn} when GM is HIGH.

11.

ZD clamps V_{xn} to 10.7 V (Zener + 1 diode drop) when GM is LOW. V_{x}

 (\mathbf{A})

2.5

2

Integrated Current-Mode Control

- In PFC and other applications, a resistor in series with the power transistor is used to sense the transistor current for:
 - current-mode control.
 - over-current protection.

Current sensing resistor for current-mode control and over-current protection.

Integrated Current-Mode Control

- Closed-loop current sensing circuit forces the sense-FET current to track the power-FET current.
- Then the sense-FET current is mirrored for peak current-mode control.

Chip Micrograph and Package

- Driver IC die:
 - 140 nm BCD-SOI
 - Measures 1.4 x 2.0 mm²
 - Analog/Driver VDD = 3.3 V
 - Digital VDD = 1.8 V
- GaN HEMT die:
 - 670 mΩ
 - Measures 1.4 x 1.6 mm²

- Co-packaged in TSSOP20 package.
- Target for power-factor-correction (PFC) application.

DCM operation at 500kHz

GaN D VDD **Cascode-Drive** ٠ GH S (CD) Mode. 0 V — V_{xn} V_{xn} is clamped to \mathbb{P}^{WM} • ~ 11 V. External Driver Si 2) On 20.0 V/ On F ⇒ 3) ₽ 4) On 100 V/ 22 1) On 1.00 V/. 20 V/DIV 15. 00000 1 V 0.0 s 4 0 × T 1 H 1.00 µs/

- **HEMT-Drive** (HD) Mode.
- V_{xn} is pulled down to 0 V.

1) On 1.00 V/

V_x

V_{xn}

1,

CCM operation at 1MHz

D

S

V_{xn}

- Cascode-Drive (CD) Mode.
- V_{xn} is clamped to PWM~ 11 V. External Driver Si

- HEMT-Drive (HD) Mode.
- V_{xn} is pulled down to 0 V.

) (P

xn

0024

1

2) ^{On} 20.0 ∨/

H 500 ns/

🔹 🔨 📕 261.4460 ns

4 0 ▶ T 31.4 V

Negative Gate Swing (HD Mode)

- Gate voltage measurement in HEMT-Drive Mode.
- Showing 3.3 V gate swing achieved by the inverted bootstrap circuit.

17. the inverted active bootstrap circuit.

Digital Peak Current Mode Control

- Digital peak current mode in CCM at 500 kHz.
- Current sensor output V_{sense} is shown.
- Larger blanking time is required in CD mode, due to the switching of the NDMOS.
 Whereas in HD mode, NDMOS is always ON.

HD vs. CD Mode Comparison

• For depletion-mode GaN HEMT:

	HEMT-Drive Mode	Cascode-Drive Mode
Pros	Direct gate control.Active slope control.	 Simple w/ conventional MOSFET driver.
Cons	 Requires negative gate swing. Large bootstrap capacitor. Still requires cascode MOSFET during power down. 	 Indirect gate control. Protection is required to avoid breakdown of LV MOSFET.
	More suitable for hard- switching application.	 More suitable for soft-switching application.

