PWR

Abstract

Parasitic capacitances of power semiconductors are a part of the key design parameters of state-of-the-art very high frequency (VHF) power supplies. In this poster, four 100 V integrated power MOSFETs with different layout structures are designed, implemented, and analyzed in a 0.18 µm partial Silicon-on-Insulator (SOI) process with a die area 2.31 mm².

A small-signal model of power MOSFETs is proposed to systematically analyze the nonlinear parasitic capacitances in different transistor states: off-state, sub-threshold region, and on-state in the linear region. 3D plots are used to summarize the intrinsic nonlinearities of the power devices. The nonlinear figure-of-merits (FOMs) are lowered by 1.3-18.3 times and improved by 22-95 % with optimized conditions of quasi-zero voltage switching. The layout impacts of the on-chip interconnections are analyzed with post-layout comparisons.

Figure 1. Proposed small-signal model of power MOSFETs (off-state, sub-threshold region, and on-state in the linear region)

Technical University of Denmark, Department of Electrical Engineering Richard Petersens Plads 325, Room 258, 2800 Kgs. Lyngby, Denmark Email: linfan@elektro.dtu.dk Phone: +45 4525 3481

PwrSoC 2016 Lin Fan Poster 1 of 3

DTU Electrical Engineering Department of Electrical Engineering

DTU Electrical Engineering PWR. Danmarks Tekniske Universitet Department of Electrical Engineering Technical University of Denmark **Intrinsic Nonlinearities and Layout Impacts of 100 V Integrated Power MOSFETs in Partial SOI Process**

Lin Fan, Arnold Knott, Ivan Harald Holger Jørgensen **Technical University of Denmark, Department of Electrical Engineering, Electronics Group** Richard Petersens Plads, Building 325, Room 258, 2800 Kgs. Lyngby, Denmark

Same	Best-case FOM vs. Worst-case FOM			
as in	FOM is lowered: by times (by percentage)			
Fig. 9	FOM _{com1}	FOM_{com2}	FOM _{hard-sw}	FOM _{soft-sw}
V_{gs}	1.5	1.3	1.3	N/A
	(32 %)	(22 %)	(22 %)	
I _{drain}	2.2	3.0	3.7	N/A
	(55 %)	(67 %)	(73 %)	IN/A
V _{ds}	1.4	18.3	2.2	2.2
	(30 %)	(95 %)	(54 %)	(54 %)

Technical University of Denmark, Department of Electrical Engineering Richard Petersens Plads 325, Room 258, 2800 Kgs. Lyngby, Denmark Email: linfan@elektro.dtu.dk Phone: +45 4525 3481

PwrSoC 2016 Lin Fan Poster 2 of 3

DTU Electrical Engineering Department of Electrical Engineering

PWR.

Layout Structure Impacts Layout a Layout b Figure 10. Layout Drain of the chip design (proposed structures are Layout d Layout c highlighted) Drain Top chip-level (including chip-pads and ESD protections) R/C Post-Post-Post-Post-Schematic Schematic Layout Layout Layout Layout c & d a & b С 2D 2D 2D 2D Parasi-No No Extract Extract Extract Extract tic Rds(on) 2.250 3.354 1.542 3.085 2.071 3.295 $(\Omega)^{a}$ C_{g-sb} M3 21.3 25.1 11.5 26.7 46.9 49.5 (pF)^b M4 C_{gd} 20.6 38.1 41.4 20.6 39.3 19.1 Drain (pF)^b C_{iss} 30.6 59.4 92.7 48.0 93.2 48.9 M4 (pF)^b Source Cd-sb 72.1 88.4 36.0 47.6 85.7 48.0 (pF)^c M4 C_{dg} 41.4 20.6 38.1 20.6 39.3 19.1 Drain (pF)^c Coss 110.2 132.1 127.6 55.1 69.5 69.8 M4 .u Source (pF)^c Rds(on) 209.7 161.0 192.0 94.4 161.1 91.6 C_{iss} (ps) M4 Rds(on) Drain 287.1 170.0 233.1 169.9 273.6 230.0 CossM3 (ps)

Technical University of Denmark, Department of Electrical Engineering Richard Petersens Plads 325, Room 258, 2800 Kgs. Lyngby, Denmark Email: linfan@elektro.dtu.dk Phone: +45 4525 3481

PwrSoC 2016 Lin Fan Poster 3 of 3

Danmarks Tekniske Universitet Technical University of Denmark

Strap

Key Contributions

1) Systematically analyzed the nonlinear parasitic capacitances of integrated high voltage power MOSFETs in a partial SOI process. 2) A modeling method is proposed for analyses in different transistor states, whereas industrial datasheets typically specify only off-states. 3) Parasitic capacitances towards bulk can dominate over parasitic capacitances towards source.

4) The nonlinear FOMs are lowered by 1.3-18.3 times and improved by 22-95 % with optimized quasi-zero voltage switching conditions. 5) Parasitic capacitances of on-chip interconnections could dominate over intrinsic capacitances of power devices.

6) Side-by-side coupling dominated layout structures may perform better than layer-to-layer coupling dominated layout structures.

Acknowledgment:

This research was funded by a grant (No. 67-2014-1) for the TinyPower project from Innovationsfonden, Denmark.

References

[1] L. Fan, A. Knott, and I.H.H. Jørgensen, "Nonlinear parasitic capacitance modeling of high voltage power MOSFETs in partial SOI process," ISI-indexed Research Journal Elektronika ir Elektrotechnika, Vol. 22, No. 3, pp. 37-43, June 2016.

[2] L. Fan, A. Knott, and I.H.H. Jørgensen, "Layout capacitive coupling and structure impacts on integrated high voltage power MOSFETs," IEEE PRIME conference, June 2016.

[3] L. Fan, I.H.H. Jørgensen, and A. Knott, "Optimization of Nonlinear Figure-of-Merits of Integrated Power MOSFETs in Partial SOI Process," IEEE ET 2016 conference, September 2016.

DTU Electrical Engineering Department of Electrical Engineering

