Control and Implementation Aspects of a Multiphase Inductor-Based FIVR in 14 nm Bulk CMOS for Microprocessor Applications

Riduan K. Aljameh¹, Pedro A. M. Bezerra¹, Florian Krismer¹, Johann W. Kolar¹, Arvind Sridhar², Thomas Brunschwiler², Thomas Toifl², Bruno Michel²

¹ Power Electronic Systems Laboratory (PES), ETH Zurich, Zurich, Switzerland ² IBM Research, Ruschlikon, Switzerland

PwrSoC 2016

Riduan K. Aljameh, Pedro A. M. Bezerra

CarrICool project objectives

Si-photonic Optical Thermal Power hench chin lid Back-side cold plate Fluidic interface Modular Glassfibre Laminate interposer array Land grid array Alianment Fan-out Collimator Inductor Capacitor waveguide features

CarrICool Demonstrator

Granular Power Delivery

Individual Subcomponents

Power Converter Research Aspects

Power Management Integrated Circuit

- Implemented using GlobalFoundries' 14 nm bulk CMOS technology (FinFETs)
- Dynamic DC voltage conversion
- High efficiency
- Possibility of operation with different inductors
- > Interposer Platform
 - 3D inductors using TSVs and magnetic core material
 - Deep Trench Capacitors
 - Process compatibility, reliability and mechanical integrity of all the packaging elements involved.

Main Research Challenges

Power Delivery

Highly granular voltage conversion using distributed ondie buck converters with interposer integrated passives.

➢ Heat Removal

Increasing heat removal and improving device reliability.

➢ Optical Signaling

Cost-effective and robust optical coupling using precise MEMS processing on the silicon interposer.

> Interposer Platform

Improving interconnect density and reducing stress in solder balls and back-end layers of the IC stack.

Chip On Interposer Platform

Power Delivery and Control Objectives

Converter Topology

Converter Specifications

Nominal Output Voltage

Min. Output Voltage

Max. Output Voltage

Number of Phases

Switching Frequency

Output Power

Parameter Input Voltage Value

1.6 V

0.8 V

0.6 V

1.1 V

1 W

4

100 - 150 MHz

Steady State Waveforms

Switches/Passives Parameters

	Value	
L _φ	Phase Inductance	14 nH
$ESR_{L,\phi}$	Inductor DC Resistance	81 m Ω
\mathcal{C}_{out}	Output Capacitance	40 nF
ESR _C	Capacitor ESR	36.2 mΩ
ESL _C	Capacitor ESL	7.6 pH
R _{DS,ON}	Switches On-Resistance	94 mΩ

Control Requirements

- Fast transient recovery
- Robust and stable voltage regulation
- Adaptive Voltage Positioning (Requires knowledge of the output current)
- Zero steady-state output voltage error
- Small area consumption
- Possibility of operation with different inductor types in the presence of tolerances/parasitics

Transient Performance Requirements

	Parameter	Value
$\Delta V_{\rm ref}$	Maximum voltage reference step	500 mV
t _{sett,ref}	Max. settling time for $\Delta V_{\rm ref}$ = 500 mV	100 ns
ΔI_{load}	Maximum load current step	625 mA
t _{sett,load}	Max. settling time for ΔI_{load} = 625 mA	70 ns
V _{droop,load}	Max. voltage droop for ΔI_{load} = 625 mA	70 mV

 $V_{\rm in}$

 $V_{\rm out}$

V_{out.min}

V_{out.max}

P_{out}

N_Φ

 f_{sw}

Control Scheme Selection

Control Scheme Comparison

	Requirement	CMHC	VMC	V_1I_L	$V_1I_L + I_o$
Steady State Performance	Fixed Frequency	-	+	+	+
	Current Sharing	+	-	+	+
Transient Performance	Load Current Step	+	-	-	+
	Reference Voltage Step	+	+	-	-
	Input Voltage Step	+	+	+	+
	Peak Current Protection	+	-	+	+
Implementation	Low ESR Cap Support	+	+	+	+
	Low BW Error Compens.	+	-	-	+
	Analog only	+	+	+	+

 $\Rightarrow The V_1I_L+I_o controller is preferred over CMHC since it inherently operates at constant switching frequency, which ensures high efficiency and is expected to allow for a more straight-forward filtering of EMI.$

M. K. Song, M. F. Dehghanpour, J. Sankman and D. Ma, "A VHF-level fully integrated multi-phase switching converter using bond-wire inductors, on-chip decoupling capacitors and DLL phase synchronization," 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, 2014, pp. 1422-1425.

A. V. Peterchev and S. R. Sanders, "Load-Line Regulation With Estimated Load-Current Feedforward: Application to Microprocessor Voltage Regulators," in *IEEE Transactions on Power Electronics*, vol. 21, no. 6, pp. 1704-1717, Nov. 2006.

Voltage Mode Control (VMC)

L. Cheng, Y. Liu and W. H. Ki, "A 10/30 MHz Fast Reference-Tracking Buck Converter With DDA-Based Type-III Compensator," in *IEEE Journal of Solid-State Circuits*, vol. 49, no. 12, pp. 2788-2799, Dec. 2014.

Layout Effort/Area Consumption

PwrSoC 2016

Riduan K. Aljameh, Pedro A. M. Bezerra

V₁**I**_L + **I**_o Control Scheme Implementation

Implemented Control Scheme

Adjustable Lossless Current Sensor

L, *ESR*, and coupling factor *k* of inductors are subject to ± 20 % tolerances. The lossless current sensor can be configured to adapt to these tolerances, so that a considerable reduction of measurement error can be achieved.

H. P. Forghani-zadeh and G. A. Rincon-Mora, "An Accurate, Continuous, and Lossless Self-Learning CMOS Current-Sensing Scheme for Inductor-Based DC-DC Converters," in *IEEE Journal of Solid-State Circuits*, vol. 42, no. 3, pp. 665-679, March 2007

Type II Error Compensator

Output Current Estimation

- $I_{\text{out}}(s) = \sum I_{\text{phase}}(s) I_{\text{C}}(s) = \sum I_{\text{phase}}(s) V_{\text{out}}(s) \cdot H_{\text{C}}(s)$
- Capacitor Current Transfer Function (2nd Order Bandpass): $H_{\rm C}(s) = \frac{1}{Z_{\rm C}(s)} = \frac{sC}{s^2 \cdot ESL_{\rm C} \cdot C + s \cdot ESR_{\rm C} \cdot C + 1}$
- Implementation:

R

R

Compensator Design Flow

14nm EGFET OpAmp Design

Desian 1 Design 2 83 dB A_{DC} GBW 395 MHz 282 MHz CMRR 69.6 dB 78.75 dB PSRR 75 dB 104 dB **Devices** 200 nm Gate EGFET Area 72 µm² 224 µW Power 128 µW

 $\label{eq:constraint} \mbox{Tradeoff: Power Consumption} \leftrightarrow \mbox{Bandwidth}$

Both designs are used depending on the required bandwidth in each respective case.

Simulation Results

6

Conclusions

Design	2012 [3]	2014 [2]	2016 [1]	This work
Process	45nm CMOS	22nm CMOS	65nm CMOS	14nm CMOS
Modulation	PWM	PWM	Hysteretic	PWM
$f_{\rm sw}$ / $N_{\rm \phi}$	80 MHz/4	140 MHz/360	200 MHz/4	100 MHz/4
L_{Φ}	26 nH	unavailable	6.5 nH	15 nH
C _{out}	23 nF	4900 nF	3.77 nF	40 nF
V _{in}	1.8 V	1.7 V	1.2 V	1.6 V
<i>V</i> _{out}	0.7 V to 1.3 V	1.05 V to 1.7 V	0.6 V to 1.0 V	0.6 V to 1.1 V
$\Delta V_{\rm out,pp}$	4 – 14 mV	3 mV	30 mV	1.2 mV
$\Delta V_{\rm ref}$	125 mV	unavailabla	unavailable	500 mV
$t_{\rm sett,ref}$	70 ns	unavaliable unavaliable		80 ns
ΔI_{load}	600 mA/100 ps	8500 mA/1 ns	280 mA/120 ps	625 mA/0.5 ns
$t_{\rm sett,load}$	26.66 ns	70 ns	14 ns	25 ns
V _{droop,load}	30 mV (with Loadline)	50 mV	78 mV	68 mV
Design	2012 [3]	2014 [2]	2016 [1]	This work

- \triangleright Design and implementation of V₁I_L + I_o in a mixed signal chip realized with 14nm technology
- > Achievement of fast load current response of 25ns using a control bandwidth of 9.67 MHz
- > Non-invasive output current estimation that can be used to achieve load-line regulation
- > Technology related compensator optimization in terms of area and power consumption
- > Design of an adjustable current sensor covering different inductors taking into account 20% manufacturing tolerance
- [1] M. K. Song, J. Sankman, J. Lee, and D. Ma, "A 200-mhz 4-phase fully integrated voltage regulator with local ground sensing dual loop zds hysteretic control using 6.5nh package bondwire inductors on 65nm bulk cmos," 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pages 9–10, Jan 2016.
- [2] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert, K. Radhakrishnan, and M. J. Hill, "Fivr fully integrated voltage regulators on 4th generation intel(r) core(tm) socs," IEEE Applied Power Electronics Conference and Exposition APEC 2014, pages 432–439, March 2014.
- [3] N. Sturcken, M. Petracca, S. Warren, P. Mantovani, L. P. Carloni, A. V. Peterchev, and K. L. Shepard, "A switched-inductor integrated voltage regulator with nonlinear feedback and network-on-chip load in 45 nm soi," IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1935–1945, Aug. 2012.

Current Design Status and Outlook

Riduan K. Aljameh, Pedro A. M. Bezerra