

DCDC converters in high magnetic field

Satish Dhawan, Yale University David Lynn & Phil Kucsewski, BNL Richard Sumner, CMCAMAC

PwrSoC2016: International Workshop on 'Power Supply On Chip' October 3-5, 2016 Madrid, Spain

Atlas Detector is underground

Application:

Point of load DC-DC converters for a particle tracking detector system at the Large Hadron Collider. The detector consists of narrow silicon strips connected by bond wires to readout chips.

Constraints:

Very high Magnetic field (2 Tesla) Must be as small as possible Must be low mass and low radiation length (minimal interaction with particles) No magnetic materials allowed (distorts the magnetic field) Must be radiation resistant.

Solution:

High frequency DC-DC Buck converter with an air core coil.

Proiblem:

The ripple current in the inductor produces an AC magnetic field. This can couple to the bond wires in the detector system, inducing currents that appear as noise.

Shielding:

The AC magnetic field from the coil induces eddy currents in a conductive box surronding the coil. These eddy currents cancel the field outside the box (and reduce the inductance of the coil). The sheet resistance of the box material must be as low as possible to maximize shielding effectiveness and minimize power loss. If the box is more than 2 mm away from the coil, the power loss in the shield can be very small, 10-30 mW.

ATLAS upgrade Silicon Strip Detector

Pick up thru the PCB of PowerBD#1 (From Liverpool)

Probe H- field E401. OD= 0.125 inches <u>http://www.bcarsten.com/?page=probes</u> Spectrum Analyzer Hambeg HMS3010

Without Carbon Fiber

Wit Carbon Fiber

Leakage ac H field thru PCB. 2 MHz Ripple field. Hard switching produces high frequency noise to ~ 1Ghz. Here low mass Carbon fiber is effective in attenuating it.

		Rms = Rm	s of d	istribution	of input nois	e across al	l char
Run 467 v	vith no +10 \	/ on powe	r card				
		Conv	erter	on this chi	o unbonded	Far Chip	
					(no Si strips)	
Chip # fro	m Results D	ata .txt file		s261	s262	s263	
Innse = m	ean input no	oise in mv					
Note	All Shields	are solder	ed on	all sides -	as much as p	ossible	
				\frown			
Liverpool	shield		_/	528	-4	90	
				547	-5	93	
2 mil Cu				61	-2	2	
0				04	0	4	
3 mil Cu				24	0	-1	
E mil Cu				10	2	4	
5 mil Cu				0	-2	1	
				9	-5	-1	
1 mil Al				10	_2	8	
				10		0	
5 mil Al				21	-1	1	
•				17	-3	2	
						_	
6 mil Al				6	2	-1	
				6	-4	2	
				12	-1	0	
	5 ohm load			8	-2	4	

Nickel Silver 0.2mm NS106 HH 60% Cu. Conductivity 8% of Cu

Yale University September 05, 2016

Liverpool Power Boards + BNL Shields

Eddy Current Shield needs high Electrical conductivity

Sheet Resistance Equivalence 4 mil copper == 6 mil Aluminum

	Resistivity								
	microOhm*cm			thickness in mils					
			1	2	4	5	6	7	
Cu	1.68		0.66	0.33	0.17	0.13	0.11		
AI	2.62		1.03	0.52	0.26	0.21	0.17		
HH NS106	27	calculated						1.5	measured
(soft)	33.00	published	12.99	6.50	3.25	2.60	2.17	1.86	
Radiation Length density		density	thichness in Radiation lengths						
	gm/cm**2	gm/cm**3							
Cu	12.86	8.96	0.18%	0.35%	0.71%	0.88%	1.06%		
AI	24.01	2.699	0.03%	0.06%	0.11%	0.14%	0.17%		
NS106	12.74	8.73	0.17%	0.35%	0.70%	0.87%	1.04%	1.22%	

The thickness in radiation lengths is the proability that an incoming gamma ray will interact and produce an electron positron pair.

calculation of NS106 radiation length

	pct	rac	l len	total
Cu		0.63	12.86	8.102
ni		0.18	12.68	2.282
mn		0.003		
zn		0.19	12.43	2.362
				12.75

Radiation Length Equivalence 1 mil copper == 6 mil Aluminum

