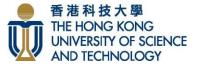
2016 International Workshop on Power Supply On Chip (PwrSoC 2016)

A Novel Silicon-Embedded Transformer for System-in-Package Power Isolation*


Rongxiang Wu¹, Niteng Liao¹, Xiangming Fang², Johnny K.O. Sin³

¹University of Electronic Science and Technology of China ²Shenzhen CoilEasy Technologies, Co. Ltd. ³Hong Kong University of Science and Technology

* This work was supported by the National Natural Science Foundation of China under grant 61306101

Madrid, October 2016

Signal & Small Power Isolation Applications

Industrial: Sensor Data Bus Motor Drive

Automobile: Motor Drive Battery Manage

Power Generation:

PV Inverter Wind Turbine

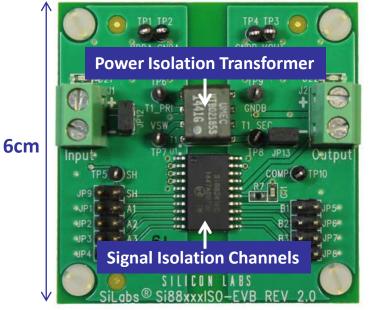
Telecom: Data Bus PoE

Medical: Patient Monitor Sensor Probe

Others:

Instrumentation

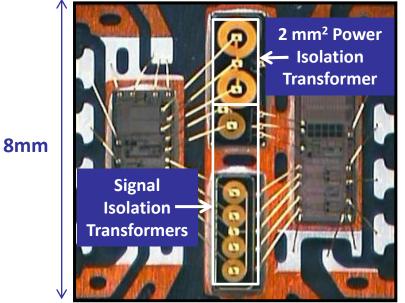
Consumer


Aerospace

R. Wu

Small Power Isolation (<2W)</p>

>Allow Simple Power Supply for Signal Isolation Channels

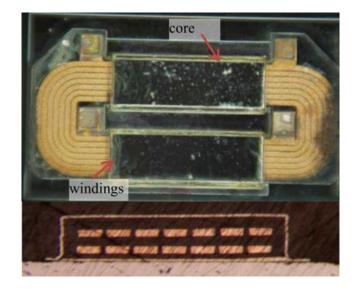

Discrete Transformer Solution

- 2μH/0.05Ω
- ✓ 200 kHz to 800 kHz
- ✓ Up to 78% dc-dc efficiency
- Low integration level
- Large solution size
- 🛚 High system cost

Ref: Silicon Labs, Si88xxxISO-EVB **R. Wu**PwrSoC'16

Small Power Isolation (<2W)</p>

>Allow Simple Power Supply for Signal Isolation Channels



Ref: Analog Devices, B. Chen, PwrSoC, 2008 R. Wu PwrSoC'16

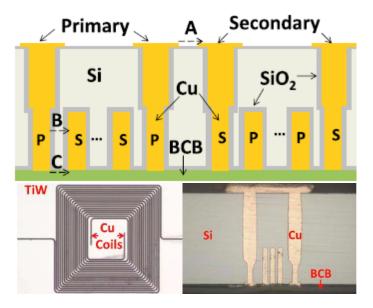
On-Chip Transformer Solution

- ✓ System-in-package integration
- ✓ Small solution size
- Low system cost
- × 16nH/1.6Ω
- 🞽 170 MHz
- Up to 34% dc-dc efficiency

■ Needed: High Performance On-Chip Transformers
> High Efficiency @ Low Frequency → Large L/R

Ref: Tyndall, N. Wang et al., IEEE TPEL, 2015

DLM Microtransformer


- 4.5 μ m core & 15 μ m metal
- 270 nH/1.22 Ω
- ✓ 78% efficiency @ 20 MHz
- ✓ 6kV Isolation
- core related issues
- × 7 masks
- × 3 mm²

PwrSoC'16

R. Wu

Needed: High Performance On-Chip Transformers

> High Efficiency @ Low Frequency \rightarrow Large L/R

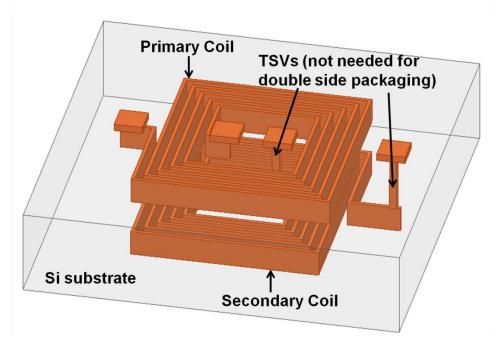
Ref: Our Work, R. Wu et al., IEEE TED, 2015

Interleaved Embedded Transformer

- \checkmark 100 μ m metal
- ✓ 88 nH/0.45 Ω
- ✓ 80% efficiency @ 20 MHz
- ✓ 3 masks
- ✓ 2 mm²

PwrSoC'16

× 380 V isolation


breakdown path C at chip surface

6

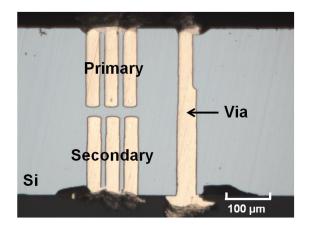
R. Wu

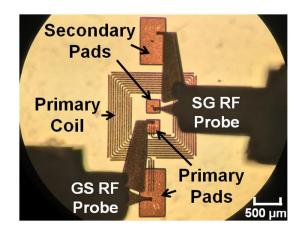
Double-Side Embedded Transformer

Device Structure

large thicknesses for both coils

- whole area usage for both coils
- breakdown through substrate:
 Cu-oxide-Si-oxide-Cu for isolation
- balanced stresses at two sides
- 🗙 weaker coupling

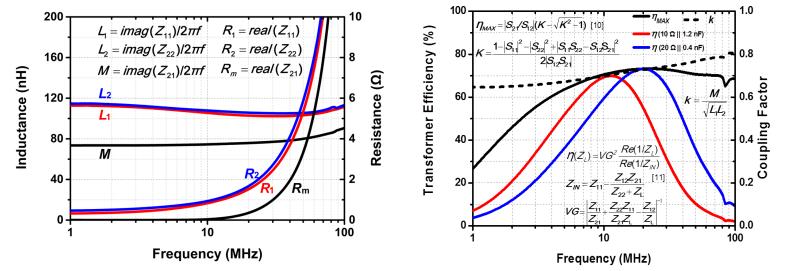

Ref: R. Wu et al., IEEE TED, in press


R. Wu

Double-Side Embedded Transformer

Transformer Design & Fabrication

Coil	Si	Cu	Track	Track	Number	Oxide
Diameter	Thickness	Thickness	Width	Spacing	of	Thickness
(µm)	(µm)	(µm)	(µm)	(µm)	Turns	(µm)
1400	350	150	22	15	9	2



Ref: R. Wu et al., IEEE TED, in press

R. Wu

Double-Side Embedded Transformer

Measurement Results

>1050 V isolation for 2 \times 2 μ m thermal oxide isolation

insulating substrate for further improving isolation capability

Ref: R. Wu et al., IEEE TED, in press

PwrSoC'16

R. Wu

9

Performance Comparison

	Coilcraft	CityU	ADI	Tyndall	Our Work	This Work
	[1]	[2]	[3]	[4]	[5]	[6]
Technology	discrete	PCB	Si	Si	Si	Si
Magnetic Core	Yes	No	No	Yes	No	No
No. of Masks	N/A	N/A	5	7	3	4
Area (mm²)	23	21	2	3	2	2
Inductance (nH)	4700	242	16	270	88	113
Resistance (Ω)	0.32	0.66	1.6	1.22	0.45	0.31
L/R (μΗ/Ω)	14.7	0.37	0.01	0.22	0.20	0.36
Coupling	0.97	0.58	N/A	0.9	0.98	0.65
Efficiency	N/A	76%	70%	78%	80%	70%
Frequency (MHz)	1	8	170	20	20	10
Isolation (kV)	1.5	15	7	6	0.38	1.05

[1] Coilcraft: "Miniature transformers LPD5030V," Revised 2015.

[2] CityU: S.C. Tang et al., IEEE Transactions on Power Electronics, pp. 311-315, 2001.

[3] ADI: B. Chen, PwrSoC, 2008; ADuM6000 Datasheet ,Revised 2013.

[4] Tyndall: N. Wang et al., IEEE Transactions on Power Electronics, pp. 5746-5754, 2015.

[5] Our Work: R. Wu et al., IEEE Transactions on Electron Devices, pp. 220-223, 2015.

[6] This Work: R. Wu et al., "A Novel Double-Side Silicon-Embedded Transformer for 10-MHz, 1-kV-Isolation, Compact

Power Transfer Applications," IEEE Transactions on Electron Devices, in press

R. Wu

Conclusions

- On-chip transformers with high efficiencies at low frequency are needed for compact, low cost, system-in-package isolated power supply (<2W).</p>
- The double-side embedded transformer features large thicknesses and whole area utilization for both coils. It achieved a best reported L/R of 0.36 μH/Ω with an area of 2 mm². Consequently it can work at a low frequency of 10 MHz with a reasonable efficiency of 70%.
- The only breakdown path is through the substrate. An isolation capability of 1050 V was achieved with two 2-µm-thick thermal oxide isolation layers, and can be further improved by using an insulating substrate.

R. Wu