International Workshop on Power Supply On Chip (PwrSoC)

October 3-5 2016, Madrid, Spain

Authors: Sylvain Leomant, Olivier Guillemant, Roesch Maximilian, Anita Risteska, Martin Poelzl

PWR. Few words about Infineon Villach, AT

Large portfolio covering 4 segments:

Automotive (ATV)

- 32-bit automotive microcontrollers for powertrain, safety and driver assistance systems
- Discrete power semiconductors
- IGBT modules
- Industrial microcontrollers
- Magnetic and pressure sensors
- Power ICs
- Radar

April 2016

- Transceiver (CAN, LIN, Ethernet, Flex Ray™)
- Voltage regulators

*FlexRay is a trademark licensed by FlexRay Consortium GbR

September 2015

Market Position*

2016-09-26

Industrial Power Control (IPC)

- Bare die business Discrete IGBTs
- Driver ICs
- > IGBT modules (highpower, medium-power, low-power)
- IGBT module solutions

ICs

2

July 2015

- incl. IGBT stacks
- MEMS and ASICs for silicon microphones
 - RF antenna switches

voltage driver ICs

Power Management &

Multimarket (PMM)

Customized chips

Discrete low-voltage

and high-voltage power

GPS low-noise amplifier

Low-voltage and high-

> Control ICs

(ASICs)

transistors

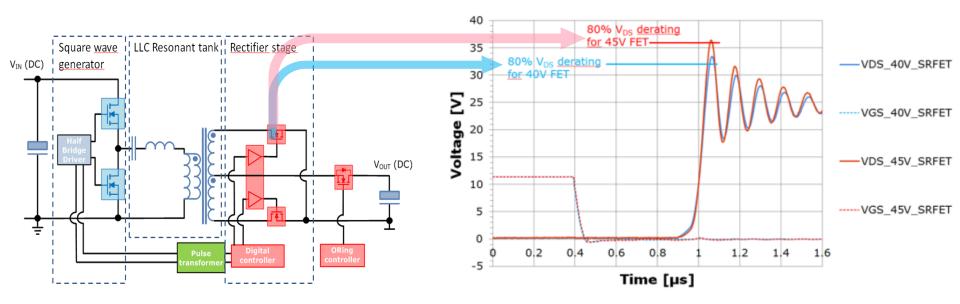
- RF power transistors
- > TVS (transient voltage suppressor) diode

Chip Card & Security (CCS)

Contact-based security controllers

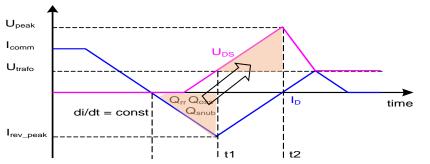
Contactless security controllers

Dual-interface securi controllers (contactbased and contactles


Villach site, 1979

1970	Founding Siemens diode production facility in Villach
1979	Formation Development Center for microelectronics in Villach Start chip production on 100 mm Wafers: Villach becomes a front end site
1997	Villach becomes Competence Center and leading site for power electronics
1998	Founding Development Center Graz
1999	Siemens Semiconductors becomes Infineon Technologies
	Joint Venture Development Center DICE-JKU Linz
2000	Stock market launch Infineon Group
2004	Founding IT-Services in Klagenfurt
2006	Opening Competence Center for Automotive and Industrial Electronics (KAI)
2013	Pioneer in chip production on 300 mm thinwafers
2015	Formation new building for R&D and production with pilot area Industry 4.0

This work: Rectifier stage for Server Power supply with efficiency levels >94%



□ Safe operation when overshoot voltage < 80% of the device rating (i.e. 32V for a 40V MOSFET)

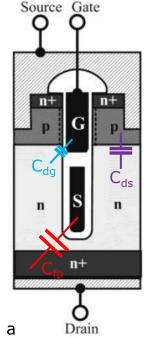
- I!! Replacing the 40V rated MOSFET by a 45V MOSFET can lead to a higher overshoot!!!
 - -> Safety margin still not fulfilled!

Voltage overshoot @Turn-off -> energy transfer from loop inductance to output capacitance.

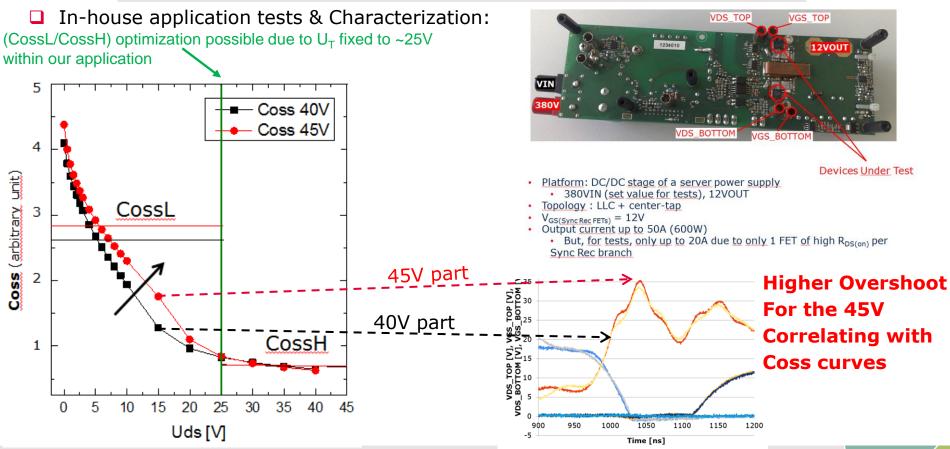
Simplified overshoot model (Ref):

$$U_T \cdot \left(\frac{1}{2}Q_{oss} + Q_{rr}\right) = \frac{1}{2}C_{oss} + \left(U_{pk}^2 - U_T^2\right)$$

$$U_{pk} = \sqrt{\frac{U_T \cdot \left(\frac{1}{2}Q_{oss}\right) + Q_{rr}}{\frac{1}{2}C_{oss}} + U_T^2} + U_T^2}$$

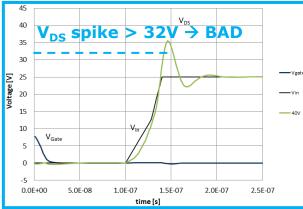

• Qrr negligible (for 40V-45V MOSFETs and application in focus)

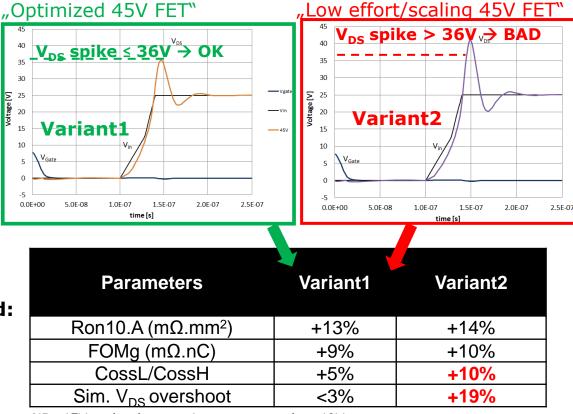
Ref: Mösslacher C. et l. "Improving Efficiency of Synchronous Rectification by Analysis of the Mosfet Power Loss Mechanism" PCIM2009


Field Plate Trench MOSFET:

Output capacitance

- $C_{oss} = C_{dg} + C_{ds} + C_{fp}$
- C_{fp} depends on Field oxide, Trench depth, Epi Doping (high interactions with the device voltage rating)
- C_{ossL}/C_{ossH} new metric introduced (see next slide)
- 45V with non optimized C_{ossL}/C_{ossH} has a higher overshoot than a 40V


Copyright © Infineon Technologies AG 2016. All rights reserved.


Voltage [V]

Simulation results:

"Reference 40V FET"

NB: 45V technology variants compared to 40V

Coss shaping successfully employed: same overshoot voltage for a 45V rated device as for the reference technology (40V).

Conclusion:

- Overshoot is application specific (Qrr, Qoss..)
- In-depth analysis with electrical charac. and simulation data.
- CossL/CossH metric defined
- 45V cell-level geometry fine-tuned(no add. passives integrated) allowing overshoot optimization with low area penalty.

Reliable, Efficient and Cost-driven system