Distributed Power Conversion - An answer to Power Delivery Challenges in SoCs?

Rinkle Jain, Jim Tschanz, Vivek De
October 8 2014
Circuit Research Lab, Intel Corporation
Hillsboro, OR
Acknowledgements

- Vaibhav Vaidya
- Stephen Kim
- Seth Sanders
- Krishnan Ravichandran
- Chai Sutantavibul
- Trang Nguyen
- Chung-ching Peng
- Tri Huynh
- Ken Ikeda
- Carlos Tokunaga
- Muhammad Khellah
- Rick Forand

This research was, in part, funded by the U.S. Government (DARPA). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.
Outline

Motivation for fully integrated VRs

Capability of Switched Capacitor Voltage Regulator (SCVR)

DVFS enabler with minimum area-power overhead

Co-design with load

Summary and Conclusion
Motivation for fully integrated voltage regulators

The Platform Perspective

Current 15" MacBook Pro w/ CRW
HSW VR solution: CPU 3 phases; PCH 1 phase

Courtesy: S. Soman, A. Uan-zo-li; Intel
Motivation for fully integrated voltage regulators

The Platform Perspective

SoCs inherently require several voltage rails

Possible solution w/o FIVR: CPU ~11 phases; PCH 1 phase

Input rail consolidation simplifies power delivery significantly
Motivation for fully integrated voltage regulators

The Die Side of the Story

- Faster state transitions by 25%, higher performance per watt
- Overall idle power slashed by 20x, battery life improvement by > 50%
- Proliferation of Integrated voltage regulators in latest technology node

[Burton et.al APEC ’14] [Kurd et.al ISSCC ’14]
Motivation for fully integrated voltage regulators

Finer Grain Voltage Domains

[Figure 6. (a) \(F_{MAX} \) recovery for different Adaptive Clock Distribution lengths. (b) Power vs. frequency for baseline design, baseline with adaptive clocking, and dual-Vcc design with adaptive clocking. (c) Energy efficiency vs. \(V_{CC} \).]

- Vmin reduction through many voltage domains
- Necessary level shifters incorporated here with 0 area penalty

[Tokunaga et. al ISSCC '14] Measured data

[PSoC 2014 Rinkle Jain]
Switched Capacitor Voltage Regulator Capability

Switched Capacitor VR with MIM

High density MIM

TEM [C.-H. Jan et al.; IEDM 2012]

<table>
<thead>
<tr>
<th>Technology</th>
<th>22nm Tri-gate CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Type</td>
<td>High Density MIM</td>
</tr>
<tr>
<td>MIM Area</td>
<td>99450 μm^2</td>
</tr>
<tr>
<td>Power Stage Area</td>
<td>3240 μm^2</td>
</tr>
<tr>
<td>Control Area</td>
<td>420 μm^2</td>
</tr>
<tr>
<td>Total Active Area</td>
<td>3660 μm^2</td>
</tr>
<tr>
<td>Total RF Area</td>
<td>101376 μm^2</td>
</tr>
<tr>
<td>Test Interface</td>
<td>Membrane probe</td>
</tr>
</tbody>
</table>

[R. Jain et al.; JSSC 2014]
Switched Capacitor Voltage Regulator Capability

Conversion Efficiency Measurements

- 84% peak and 63% minimum efficiency
- Lower peaks in other modes due to larger switch size
- Flat efficiency down to << 10% rated load with PFM

[R. Jain et al.; JSSC 2014]
Switched Capacitor Voltage Regulator Capability

Motivation for Conductance Modulation

\[V_e = V_{in} \frac{n}{m} \]

\[R_{out} = f(R_{fsl} \propto \frac{r_{dson}}{d}, R_{ssl} \propto \frac{1}{C_{fsw}}) \]

Averaged Model

Efficiency Contours

Limitations of simple frequency modulation

- Lower-than-optimal conversion efficiency at lower voltages
- Increased output ripple and associated power loss at light loads
- Input noise coupling. EMI/RFI due to impulsive current draw

Other knobs: \(1/r_{dson} \) (conductance), \(C \) (fly capacitance), \(d \) (duty)
Switched Capacitor Voltage Regulator Capability

Motivation for Conductance Modulation

\[V_e = V_{in} n/m \]

\[R_{out} = f(R_{fsl} \propto \frac{r_{dson}}{d}, R_{ssl} \propto \frac{1}{C_{fsw}}) \]

Averaged Model

Efficiency Contours

Limitations of simple frequency modulation

- Lower-than-optimal conversion efficiency at lower voltages
- Increased output ripple and associated power loss at light loads
- Input noise coupling. EMI/RFI due to impulsive current draw

Other knobs: \(1/r_{dson} \) (conductance), \(C \) (fly capacitance), \(d \) (duty)
Switched Capacitor Voltage Regulator Capability

Adaptive Widths Architecture

- Total transistor size implemented as 3 weighted banks (ratio 2:1:0.25)
- 8 way interleaving, 2GHz input clock; 2 bits for width selection

[R. Jain et al.; CICC 2014]
Switched Capacitor Voltage Regulator Capability

AW Measurements at Constant V_{ref}

- $f_{\text{sw}} < F_{\text{th}} W = \frac{bW'}{a}$ implies higher efficiency at W' ($W'=W/n$)
- f_{sw} is a good indicator of low voltage and light load conditions
Switched Capacitor Voltage Regulator Capability

AW Measurements at different V_{ref}

- Rout uniquely defines the optimal width
Switched Capacitor Voltage Regulator Capability

AW control law: Measurements

- \(F_{th} \) for each width computed from two open loop measurements
- Results show that proposed transition is effective
Switched Capacitor Voltage Regulator Capability

AW Conversion Efficiency Measurements

- All three major loss mechanisms scale with load (more than linearly)
- Nearly 15% improvement in 2:1 mode
Switched Capacitor Voltage Regulator Capability

AW Conversion Efficiency Measurements

- Constant resistance load
- All modes show optimal efficiency peaks
Capability Summary

<table>
<thead>
<tr>
<th>Reference</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>45nm SOI</td>
<td>45nm</td>
<td>32nm SOI</td>
<td>22nm trigate</td>
</tr>
<tr>
<td>Passives type</td>
<td>Deep trench</td>
<td>Gate Oxide SOI</td>
<td>Gate Oxide</td>
<td>MIM</td>
</tr>
<tr>
<td>Maximum frequency</td>
<td>100MHz</td>
<td>30MHz</td>
<td>225MHz</td>
<td>250MHz</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>2V</td>
<td>1.8V</td>
<td>2V</td>
<td>1.23V</td>
</tr>
<tr>
<td>Output</td>
<td>0.95V/2.7mA</td>
<td>0.8-1V/8mA</td>
<td>0.4-1.1V/0.28A</td>
<td>0.45-1V, 88mA</td>
</tr>
<tr>
<td>Power Efficiency %</td>
<td>90</td>
<td>69</td>
<td>81</td>
<td>70@0.55V, 84@1.1V</td>
</tr>
<tr>
<td>Response time</td>
<td>Unregulated</td>
<td>120-200ns</td>
<td>Unregulated</td>
<td>3-5ns</td>
</tr>
<tr>
<td>Droop</td>
<td>-</td>
<td>250mV</td>
<td>-</td>
<td>≤25mV</td>
</tr>
<tr>
<td>Current density A/mm²</td>
<td>2.3</td>
<td>0.050</td>
<td>0.73</td>
<td>0.88</td>
</tr>
<tr>
<td>Area Overhead</td>
<td>13%</td>
<td>6x</td>
<td>41%</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

- All-digital multi-mode SCVR in 22nm tri-gate CMOS using high-density MIM
- Wide voltage range, good conversion efficiency across load
- Low area overhead of 3.6%, comparison assumes 30mA, 0.1mm² load
- Fast < 5ns response times
- Max VR current density of 400(880) mA/mm² in 1:1(2:1) modes
Current capability

- At 1V, 2:1 mode: 1.2-1.6A/mm² (22nm)
- Atom at 2.5A/mm², Graphics at 1.25 A/mm²
- Worst case di/dt: atom at 2A/ns, Graphics at 150mA/ns
- Vin=Vccmax feasible, downconversion is not a must
- Reuse power gates, hybrid solution with LDO
- Minimum active power and area overhead
Distributed Implementation

Physical Design Constraints

Practical issues: Co-design with load

- Graphics: large area, lower power density
- Lots of signals traverse x and y and $x < y$
- Highly automated design, push button SoC Methodology (unlike core)
- Shared metal resources, IR drop on weak grids

Need for distribution

- One contiguous VR block \Rightarrow large keep-out-regions in APR
- A stand-alone minimum-size VR tile desired, custom-laid out ok
- VR tile should be reuse-able across loads of any size, aspect ratio
Distributed Implementation

Active Ripple Control Enabling Distribution

Proposed solution

- Distributed standalone tiles
- Minimal interleaving
- Local current mode control
- Central PFM to drive all tiles
Distributed Implementation

Active Ripple Control Enabling Distribution

- VR Tile 1 V_{out}
- VR Tile 2 V_{out}
- Central feedback sense V_{out}
- V_{ref}
- Load step at Tile1

PSoC 2014 Rinkle Jain
Distributed Implementation

Active Ripple Control Enabling Distribution

VR Tile 1 Vout

VRTile 2 Vout

Central feedback sense Vout

Vref

load step at tile 1
Distributed Implementation

Active Ripple Mitigation Scheme (ARMS)

- Gate voltage of select transistors controlled using diff amplifier
- Ideally switch currents match load currents on a cycle by cycle basis

Objective: A frugal design that works across all conversion modes
Distributed Implementation

Active Ripple Mitigation Scheme (ARMS)

ARMS in 2:1 Operation

Low-Bound Hysteretic Control (LBHC)

Adaptive Gate Driver (AD)

PSoC 2014 Rinkle Jain
Load, V_{out} independent ripple

Minimum size VR tile
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated
- Capacitance density and ESR dict ate SCVR capability, less area with every node
- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations. (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated
- Capacitance density and ESR dictate SCVR capability, less area with every node
- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations. (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated

Capacitance density and ESR dictate SCVR capability, less area with every node

- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations, (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated
- Capacitance density and ESR dictate SCVR capability, less area with every node
- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations, (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated
- Capacitance density and ESR dictate SCVR capability, less area with every node
- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations, (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated
- Capacitance density and ESR dictate SCVR capability, less area with every node
- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations, (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated
- Capacitance density and ESR dictate SCVR capability, less area with every node
- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations. (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Summary

- Point-of-load VR solution for fine grain domains enable power benefits
- Fast switched capacitor VRs with low area overhead demonstrated
- Capacitance density and ESR dictate SCVR capability, less area with every node
- Hybrid DLDO-SCVR meets medium current density loads, no power penalty
- Control techniques ensure optimal efficiency and small VR tiles
- Distributed VRs desired for APR-friendly SoC integration for wide adoption
- High-current-density loads may have (i) few bumps or platform limitations, (ii) high di/dt, tighter impedance requirements ⇒ step down IVR

Higher current density VR solutions for small domains are needed!
Thank you for your attention!