Considerations for Embedding Passives and Actives in PCBs

PwrSoC 2014
What is embedding?

Styles

- Layer embedding
 - Capacitive and/or resistive layers

- Partial embedding
 - Cavities in substrates

- Full embedding
 - Components in substrates
 - Focus on ECP from AT&S
Why are we embedding?

Trends and challenges in electronics

- More functions
- Smaller devices
- Shorter development cycles
- Increased component density
- More-fragile components
- Miniaturisation

- Reliability
 - More-complex supply-chain
 - Increased cost of IC design
 - Higher power dissipation
 - Lower power
 - Increased clock frequency

- Ease-of-use
 - Performance
 - Embedding in PCB / PwrSoC 2014
Agenda

- Why embedding?
- Embedding flavours
- Embedding by AT&S
- Reliability comparison
- Supply chain
- Comparison with QFN
- Conclusion
Embedding flavours

Embedded layer

- **Pros**
 - High flexibility in number and position of passive functions
 - General compatibility with standard PCB processes

- **Cons**
 - Higher material cost than standard PCB
 - Limitation to low passive values
 - Limitation to passive functions
Embedding flavours

Partial embedding

- **Pros**
 - Similar price to standard PCB
 - Compatibility with standard components
 - Possibility to improve electrical/thermal performance

- **Cons**
 - Increased complexity of component placement
 - Loss of integration
 - Limitation to wirebonded actives for low-layer-count PCBs
Embedding flavours

Full embedding

- **Pros**
 - Miniaturisation through 3D integration
 - Increased performance through short connections
 - Increased performance through heat conduction

- **Cons**
 - Higher m2 price
 - Limitation to process-compatible components
<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why embedding?</td>
</tr>
<tr>
<td>Embedding flavours</td>
</tr>
<tr>
<td>Embedding by AT&S</td>
</tr>
<tr>
<td>Reliability comparison</td>
</tr>
<tr>
<td>Supply chain</td>
</tr>
<tr>
<td>Comparison with QFN</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Embedding by AT&S

Component placement
Component placement

- 1 ASM X4 equivalent to 80 die placers
Embedding by AT&S

PCB and interconnect formation

IC
Embedding by AT&S

Interconnect formation

- 1 laser-drilling station equivalent to 100 wirebonders
Embedding by AT&S

Structuring and finish
Embedding by AT&S

Requirements

- Cu terminations (minimum 5 mm)
- Components in tape-&-reel
- Nothing else!
Embedding by AT&S

Benefits

- High integration
- High performance
- Very-high-scale production

Efficient and cost-effective technology
Agenda

Why embedding?

Embedding flavours

Embedding by AT&S

Reliability comparison

Supply chain

Comparison with QFN

Conclusion
Reliability comparison

Passives
Reliability comparison

Passives
Reliability comparison

Passives

- Drop test (JESD22-B111) @ 1500 g
 - SMT components (126 daisy chains)
 - First failure @ 304 drops
 - 100-% failure @ 974 drops
 - ECP components (126 daisy chains)
 - First and only failure @ 832 drops
 - Test end @ 1000 drops
Reliability comparison

Passives

- TCT (JESD22-A104C) @ [-40; +125] degC
 - SMT components (35 daisy chains)
 - Zero failure @ 1000 cycles
 - ECP components (35 daisy chains)
 - Zero failure @ 1000 cycles
Reliability comparison

Actives
Reliability comparison

Actives
Reliability comparison

Actives

- Drop test (JESD22-B111) @ 1500 g
 - SMT components (70 daisy chains)
 - First failure @ 792 drops
 - 4 failures @ 1000 drops
 - ECP components (70 daisy chains)
 - Zero failure @ 1000 drops
Reliability comparison

Actives

- TCT (JESD22-A104C) @ [-40; +125] degC
 - SMT components (70 daisy chains)
 - First failure @ 684 cycles
 - 100-% failure @ 999 cycles
 - ECP components (70 daisy chains)
 - Zero failure @ 1000 cycles
Reliability comparison

Actives

- Bend test (JEDEC-9702) @ 2 mm/min (28 mm maximum)
 - SMT components (63 daisy chains)
 - First and only failure @ 3.71 s
 - ECP components (63 daisy chains)
 - Zero failure @ 14 min
Supply chain

Suppliers

- Actives
 - Cu available from selected foundries
 - RDL available from OSATs

- Passives
 - Resistors available from AVX and Murata
 - Capacitors available from KOA and Panasonic

- IPDs
 - Available from IPDiA, Maxim and STMicroelectronics
Supply chain

Technology complexity (or lack thereof)

- Standard PCB processes
- Standard SMT processes
- Main production facilities in China

☞ Very quick capacity extension possible
Supply chain

Integration in packaging flow

- Very-high-yield process
 - 2L @ 99+%

- Flexibility of delivery format
 - Any size up to 400*550 mm

- Intermediate-testing relevance
 - If QFN replacement
 - Only after singulation
 - If SiP
 - Do you test after every component placement/interconnection?

- Seamless integration in standard packaging flow
Supply chain

Partnership

- Agreement with TDK-EPCOS
 - TDK-EPCOS as second source for ECP
 - AT&S as second source for SESUB
 - Limiting customer concerns with regards to technology selection/dissemination
 - Co-development of next-generation embedding technology

- Need to encourage ecosystem
 - Risk of customer distrust (monopoly)
Agenda

Why embedding?

Embedding flavours

Embedding by AT&S

Reliability comparison

Supply chain

Comparison with QFN

Conclusion
Comparison with QFN

Structure

ECP

2.5D

QFN
Comparison with QFN

Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ECP</th>
<th>2.5D</th>
<th>QFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die size (mm)</td>
<td>2*2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package size (mm)</td>
<td>4*4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of I/Os</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die thickness (µm)</td>
<td>150</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Package thickness</td>
<td>300</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>Interconnect</td>
<td>Via</td>
<td>WB</td>
<td>WB</td>
</tr>
<tr>
<td>Thermal resistance (K/W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{j-top}</td>
<td>30</td>
<td>94</td>
<td>120</td>
</tr>
<tr>
<td>$\theta_{j-bottom}$</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>$\theta_{j-ambient}$</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Interconnect inductance (nH)</td>
<td>0.7</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Cost</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Testability</td>
<td>QFN footprint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

Why embedding?

Embedding flavours

Embedding by AT&S

Reliability comparison

Supply chain

Comparison with QFN

Conclusion
Conclusion

Embedding

- Different variants depending on requirements
 - Embedded layer
 - Partial embedding
 - Full embedding

- Improved performance for limited to neutral cost increase
 - Size reduction
 - Improved thermal resistance
 - Improved electrical characteristics

- Maturing and reliable technology

- Full supply chain in place with second-source options

➡️ What will be the next big application?
Thank you for your attention!

Questions?