High Frequency Switching Regulators for High Current Slew Rate Applications

Min Kyu Song, Joseph Sankman, and Dongsheng Brian Ma

Integrated System Design Laboratory
The University of Texas at Dallas
E-mail: d.ma@utdallas.edu
Outline

- Background and Challenges
- Integrated Design Solution
 - Near Zero Delay Response
 - \(f_{SW} \) Synchronization
 - Adaptive Voltage Tracking
 - High-Speed Current Sensing
- Design Examples
- Conclusions
Microprocessor Power Supply Trends

Recent Trends:
- Increasing clock frequency.
- Greater number of cores.
- Increasing power dissipation.

Fast Slew Rate: >1A/ns
Extremely High Magnitude

Presented by D. Brian Ma
2014 International Power Supply on Chip Workshop
Key Design Consideration: f_{SW}

- f_{SW} Increase
 - To satisfy the **Trends**: $f_{SW} \approx 0.5\text{~to}1\text{GHz}$
 - Dramatic switching power loss increase.
 - Significant efficiency drop.

- Efficiency
- Power Level

Trends of Advanced
μProcessors in Mobile
Applications
Key Design Consideration: Control Scheme

- PWM Control
- Fixed \(f_{SW} \)
- Slow feedback loop – \(\Delta Q_{PWM} \)
- Larger \(V_O \) droop.

Specifications:
- \(C_O < 10 \mu F \)
- \(I_{L_RIPPLE} < 200mA \)
- \(I_O \approx 0 \sim 6A \)
- \(I_{O_{SR}} \approx 1A/1ns \)
Key Design Consideration: Control Scheme

- **Hysteretic Control**
- Fast response.
- Still, hysteresis delay. – t_{DEL}
- Varying f_{SW}. – t_{SYNC}
- Physical inductor current slew rate limitation. – dI_L/dt

Control Scheme → PWM Control (Slow) → Hysteretic Control (Fast)
Key Design Consideration: Circuit Architecture

- **Challenges**
 - Synchronization, current-sharing* along with *fast hysteretic control.*
 - Circuit implementation of current sensing at VHF levels.

Conventional Hysteretic Control

- **Fixed Hysteresis Window**
 - Finite hysteresis window size of $V_H - V_L$.
 - Hysteresis delay $\propto V_H - V_L$.

Presented by D. Brian Ma

2014 International Power Supply on Chip Workshop
Zero Delay Response at I_O Step-Up

- During $(1-D)T$, the control provides a zero hysteresis window, $V(I_L)-V_{HYS}=0$.
- When I_O steps up during $(1-D)T$, V_G turns on without delay since I_L exits the (near-) zero hysteresis window instantly.
\(f_{SW} \) Synchronization

- At \(V_{CLK} \) pulse, \(V_{HYS} \) is reset to \(V_H \).
- \(V_G \) turns on instantly when \(V_{HYS} \) hits \(I_L \).
- \(V_G \) remains on until \(I_L \) reaches to \(V_{HYS} \).
- The leading edge of DT is synchronized to \(V_{CLK} \).
Synchronization Recovery Scenario

- At the next V_{CLK} pulse, V_{HYS} is reset to V_H, triggering V_G on.
- Leading edge of V_G is synchronized to V_{CLK}.
- I_L is stabilized within a few cycles.
Adaptive Voltage Tracking

• As V_{REF} increases, V_{ERR} increases, causing the slope of V_{HYS} to become shallower.

• Sensed I_L takes longer to intersect V_{HYS}, causing an instantaneous duty ratio time change, ΔDT.

Presented by D. Brian Ma

2014 International Power Supply on Chip Workshop
I_L-Sensing Limitations on VHF Operation

Transistor R_DS Sensing

- L_X-spiking.
- Discontinuous.
- Wide-bandwidth amplifier required.

Series R_SENS Sensing

- Continuous.
- Power loss.
- Wide-bandwidth amplifier required.
I_L-Sensing Limitations on VHF Operation

Pros:
- Continuous I_L sensing.
- No additional power loss from series R.

Cons:
- Small DCR.
- Insufficient current sense gain requires additional wide-bandwidth amplifier.

More power consumption as f_{SW} increases!
Emulated AC+DC Current Sensor

- Split the AC (fast) and DC (slow) portion of I_L, amplify them separately, and combine them together.
- It eliminates the need for a power hungry wide-bandwidth amplifier in order to amplify the V_{DCRs}.

Presented by D. Brian Ma

2014 International Power Supply on Chip Workshop
Example 1*: PMIC for High I_0 Slew Rate APs

- ZDS Hysteretic Control
- 4-phase synchronization
- Cycle-by-cycle current sharing.
- Adaptive transistor sizing with forced-CCM and I_L-sensed burst mode control

Presented by D. Brian Ma

2014 International Power Supply on Chip Workshop
Results: Transient Response

- 5A load step with >1A/1ns slew rate is tested with 2×470nF (10mΩ ESR) filtering output capacitor.
- Forced-CCM operation is temporarily active during the I_o step down.
Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>PWM</td>
<td>Hysteretic</td>
<td>Hysteretic</td>
<td>ZDS Hysteretic</td>
</tr>
<tr>
<td>Current Sharing</td>
<td>Master-Slave</td>
<td>Cycle-by-Cycle</td>
<td>None</td>
<td>Cycle-by-Cycle</td>
</tr>
<tr>
<td>$V_{IN \text{ (MAX)} \text{ (V)}}$</td>
<td>1.2</td>
<td>1.2</td>
<td>4.9</td>
<td>3.3</td>
</tr>
<tr>
<td>$V_{OUT \text{ (V)}}$</td>
<td>0.6-1.05</td>
<td>0.9</td>
<td>0.86-3.93</td>
<td>0.7-2.5</td>
</tr>
<tr>
<td>$f_{SW \text{ (MHz) (phases)}}$</td>
<td>100 (\times4)</td>
<td>233 (\times4)</td>
<td>32-35 (\times4)</td>
<td>40 (\times4)</td>
</tr>
<tr>
<td>$L \text{ (nH)}$</td>
<td>8</td>
<td>6.8</td>
<td>110</td>
<td>78</td>
</tr>
<tr>
<td>$C_{OUT \text{ (µF)}}$</td>
<td>0.00187</td>
<td>0.0025</td>
<td>0.2</td>
<td>0.94</td>
</tr>
<tr>
<td>$I_{MAX \text{ (A)}}$</td>
<td>1.2</td>
<td>0.3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Load Step (mA/µs)</td>
<td>180 / 800</td>
<td>150 / 0.1</td>
<td>300 / 30</td>
<td>5000 / 5</td>
</tr>
<tr>
<td>1% $t_{settle \text{ (µs)}}$</td>
<td>\sim2000</td>
<td>\sim30</td>
<td>\sim350</td>
<td>230</td>
</tr>
<tr>
<td>$V_{OUT \text{ Droop (%)}}$</td>
<td>6.7%(V_{OUT}=0.9V)</td>
<td>10%(V_{OUT}=0.9V)</td>
<td>10%(V_{OUT}=1.8V)</td>
<td>9.8%(V_{OUT}=1.2V)</td>
</tr>
<tr>
<td>Peak Efficiency (%)</td>
<td>82.4</td>
<td>83.2</td>
<td>80</td>
<td>86.1</td>
</tr>
</tbody>
</table>
Example 2*: Envelope Modulator for LTE PAs

- Dual-phase **switching converter-only** topology.
- Adaptive Voltage Tracking (AVT) control.
 - Fast hysteretic response.
 - Clock sync. for predictable noise

Key Results

Specs:
- 2-W PA
- $V_{IN} = 3.3$ V
- 10-MHz LTE
- The dual-phase converter
- synchronized at 40MHz with 180° phase shift.

Proposed 2-Phase 40MHz DC-DC Converter (DC input reference)
Proposed Supply Modulator (Tracking 10MHz LTE envelope signal)
Conclusion

- Current SoCs face speed bottleneck imposed by slow and bulky power management solutions.
- Strong demands for “smart” power and performance control push the power management to be achieved on-chip.
- As high density, high frequency and high speed become necessary, they create unprecedented design challenges.
- Cross-layer design efforts are needed in order to achieve desired performance breakthroughs.
Acknowledgements

This work is in part supported by the U.S. National Science Foundation under the research contracts CCF-0844557 and DGE-1147385 and the Semiconductor Research Corporation under the research contract GRC 1836.139.