Power Supply on Chip 2014- October 6<sup>th</sup> - 8<sup>th</sup> 2014. Boston

# **Development of High Efficiency Integrated Micro**transformers on Silicon for Power & **Signal Isolation**

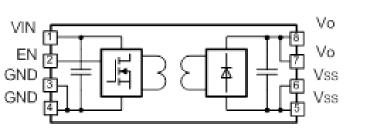
Ningning Wang<sup>1</sup>, Rias Miftakhutdinov<sup>2</sup>, Santosh Kulkarni<sup>1</sup>, Cian Ó Mathúna<sup>1,3</sup> <sup>1</sup>Microsystems Center, Tyndall National Institute, University College Cork, Cork, Ireland <sup>2</sup>Texas Instruments, Dallas, Texas, 75266, United States of America

<sup>3</sup>Department of Electrical & Electronic Engineering, University College Cork, Cork, Ireland



EAN REGIONAL

'Yndal'


www.tyndall.ie





## **Background & Motivation**

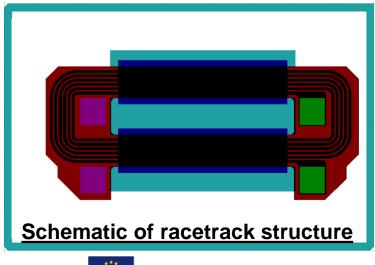
| Footprint<br>(mm <sup>2</sup> ) | Volume<br>(mm <sup>3</sup> ) | Frequency<br>MHz |  |
|---------------------------------|------------------------------|------------------|--|
| 50                              | 150                          | 1                |  |
| 30                              | 25                           | 5                |  |
| 7.0                             | 3.5                          | 20               |  |
| 2.0                             | 1.0                          | 50-100           |  |



#### **Isolated Integrated bias supply**

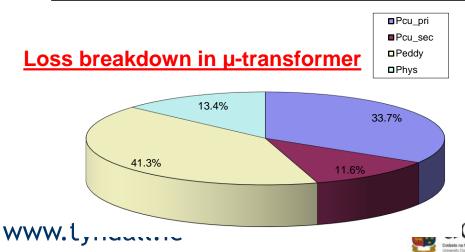





| Isolated Converter Specs |                    |  |  |  |
|--------------------------|--------------------|--|--|--|
| Switching Frequency      | 20 MHz             |  |  |  |
| Turns ratio              | 1:1                |  |  |  |
| Footprint                | <4 mm <sup>2</sup> |  |  |  |
| Input Voltage            | 5V                 |  |  |  |
| Output Voltage           | 5V                 |  |  |  |
| Load Current             | 100 mA             |  |  |  |



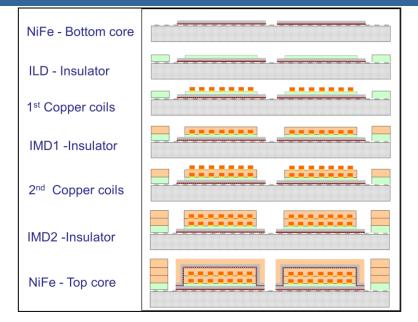
### µ-transformers on Silicon technology-Design & Optimization

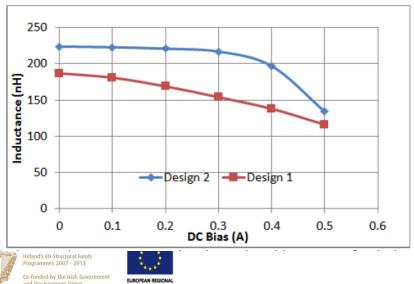

#### In-house optimization tool

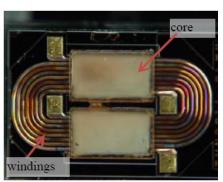
- Racetrack structure
  - higher magnetizing inductance
  - good coupling factor
  - anisotropic core
- Ni<sub>45</sub>Fe<sub>55</sub> as core material



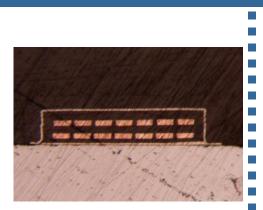



| Transformer Prototype   | Design 1 | Design 2 |
|-------------------------|----------|----------|
| Winding width, $\mu m$  | 40       | 45       |
| Winding thickness, µm   | 15       | 15       |
| Winding spacing, µm     | 15       | 15       |
| Turns ratio,            | 6:6      | 7:7      |
| Core thickness, $\mu m$ | 4.1      | 4.1      |
| Core length, mm         | 1.32     | 1.58     |
| Device length, mm       | 2.59     | 3        |
| Device width, mm        | 1.15     | 1.35     |
| DC resistance, Ohm      | 1.1      | 1.33     |
| Inductance at 20MHz, nH | 210      | 280      |

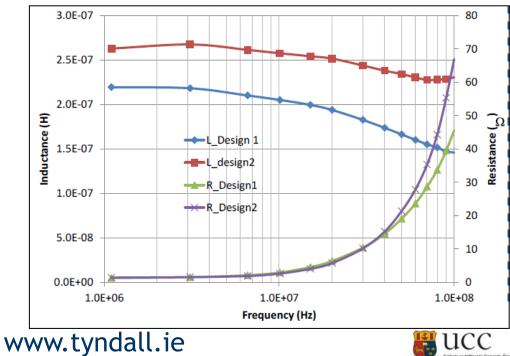



and the European Union


### µ-transformers on Silicon technology-**Fabrication & Characterization**








Top View



Cross-section





#### µ-transformers on Silicon technology-Converter tests & Conclusion

| TP1 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRI P2 O PRI P1<br>PRI 52 O PRI 0 PRI 51<br>SEC 52 O PRI 0 SEC 51    | Converter test results |                      |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|----------------------|----------------------|
| TP2 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      | Technology             | Air-core             | This Work            |
| TP4 TP6 0<br>TP8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEXAS<br>INSTRUMENTS<br>INSTRUMENTS<br>STRUCTURE<br>TEST EVW<br>REF# | Footprint              | 2mm <sup>2</sup>     | 3mm <sup>2</sup>     |
| Pier I Litt Verdicel Restance Trig Deglerr Custors Measure Meak Web VerScope Analyze Usbalen Heb T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      | Inductance             | 8 nH                 | 270 nH               |
| Sec Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | econdary voltage<br>— DC voltage at output filter                    | Inductance<br>density  | 17nH/mm <sup>2</sup> | 80nH/mm <sup>2</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nary voltage                                                         | Frequency              | 180 MHz              | 20 MHz               |
| Primary current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nary current                                                         | Coupling               | 0.85                 | 0.97                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      | Efficiency             | 70%                  | 78.2%                |
| Image: Proper till Image: till   Image: Till |                                                                      |                        |                      |                      |

- ✓ Batch micro-fabricated transformers with advanced double layer metal process
- ✓ High Voltage Gain >-1dB at 10~40MHz
- $\checkmark$  High measured efficiency of 78% at 20MHz
- $\checkmark$  Higher converter efficiency @ 20MHz (> 60%) than air-core based solutions
- ✓ Small footprint area (<3mm<sup>2</sup>); Power density- 110 W/cm<sup>3</sup>
- \*The authors acknowledge Enterprise Ireland for Funding this work.