Integrated Components for Chip Scale Power Management

Miniature power converters
- High frequency RF power inductors
- CMOS switching / control
- Tunable components
- Mechanical transformers

Monolithic / hybrid integration
- 3D integration for SWAP constrained systems
- Hybrid component integration

Wearable power components
- Stretchable power inductor and components
- Wireless power coupling for integrated soldier power

Power supply on chip

ARMY Applications
- Microrobotics
- Small munitions
- Radios
- Portable electronics
- Soldier power

...
Integrated Components for Chip Scale Power Management

Christopher D. Meyer1, Sarah S. Bedair1, Jeffrey S. Pulskamp1, Ronald G. Polcawich1, Nathan S. Lazarus1, Iain M. Kierzewski1, Xue Lin2, Christopher Dougherty2, and Rizwan Bashirullah2

1U.S. Army Research Laboratory
2University of Florida

Heterogeneous Die Integration Process

- Electroplated copper holds die in place in silicon wafer
- Simultaneously yields electrical vias with 125-326 μΩ resistance through 525 μm thick silicon handling wafer

Corner Alignment Notches

- Corner notches give hand-placed lateral alignment within 20 μm

Topside Pad Alignment

- Frontside 3 layer 10 μm copper with spray-coated AZ4999 for interconnects and passives

Planarity

- Frontside alignment against photoresist-coated wafer for micron-level planarity over mm-scale die

Integrated Components for Chip Scale Power Management

Christopher D. Meyer, Sarah S. Bedair, Jeffrey S. Pulskamp, Ronald G. Polcawich, Nathan S. Lazarus, Iain M. Kierzewski, Xue Lin, Christopher Dougherty, and Rizwan Bashirullah

- Fully-integrated (mm3) bi-directional converter driving ARL mm-scale robot wing
 - PZT actuated, 10 V, DC-500 Hz, CL=2-5 nF
- Design, model & test of switched-capacitor ladder converter w/ new voltage distributed nested bootstrap technique
- Fabricated in 0.13 µm 1.2/3.3V triple-well CMOS
- Demonstrated 3x voltage boost
- Achieved 77% efficiency with 800 µW load

Measured Efficiency

Step Response to 5 nF

Die Photo

Nested-Bootstrapped Switch (NBS) Cells

mm3 Converter Driving ARL's Micro-flyer
Developed analytical models describing both efficiency & voltage gain for piezo-on-silicon (composite) transformers

Measured 6:1 voltage gain and 60% efficiency

~100 mW power through 30 x 70 x 4 µm thick (3 µm SOI) device, leading to > 10 Watts / mm³

Comparison to MEMS resonators

Comparison to commercial PT's

Voltage Gain vs. Efficiency

Voltage Gain

Piezo-on-silicon transformer

Principle

Energy Storage Energy density Limits Theor. Limit
Magnetic field $\sim \mu T$ Magnetic saturation $\sim 10^4$ J/m³
Strain $\sim Y_e$ Fracture $\sim 10^7$ J/m³

Fabricated device

Extensional harmonic

GSG pads

300 µm

Power Handling on Si

5429 Q3 JPTestRes - 3um Si, 10Vb

-15dBm
-10dBm
-5dBm
0dBm
5dBm
10dBm

-35 -30 -25 -20 -15
20*log10(S21) [dB]
Frequency [Hz]

Power density [W/mm³]
PT length [mm]
Commercial PT
PZT only
PZT on silicon
ARL

FOM = k_eff² Q

-15 -10 0 5 10 15
20*log10(S21) [dB]
Frequency [Hz]

Comparison to commercial PT's

• Develop power systems to allow highly efficient wireless power of stretchable systems
• Multilayer inductors based on liquid metal galinstan for 150%+ strain
 – 250 nH stacked spiral and 55 nH solenoid
• Characterization of space-filling fractal inductors with solid metal traces
 – Lower order fractals similar performance to serpentine, higher order worse
 – 10x lower peak stress than serpentine

Fractal Inductors

<table>
<thead>
<tr>
<th>Hilbert</th>
<th>Peano</th>
<th>Moore</th>
<th>Sierpinski</th>
<th>Luxberg I</th>
<th>Luxberg II</th>
</tr>
</thead>
</table>

Silicone molding process

1. Top mold
2. Cured silicone
3. Botton mold
4. Un-cured silicone

Multilayer Inductors