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fabrication become possible.

Our goal is to integrate the magnetics into the
power electronics circuits to achieve yet higher
power densities.

Focus on toroidal inductors since they produce
minimal external fields, external losses and
electromagnetic interference problems.
Magnetics can be on insulator or silicon-
embedded.
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Closed-Form Solutions for Losses

Analytical models are developed for electrically-driven and magnetically-driven losses, and parasitic capacitance.
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Conclusions

The equivalent circuit model matches well the
measured behavior of silicon-embedded and
on-insulator toroidal inductor.

Measurement Vs. Models Loss Distribution

Models compared to impedance-analyzer
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