Fe-system magnetic flake composite planar inductor integrated for a SiP DC-to-DC converter (Invited e-poster)

Yasushi Endo1, Hiroyuki Sato1, Masahiro Yamaguchi1, 1Department of Electrical Engineering, Tohoku University
Hiroshi Kamada2, Masahito Takahashi2, Masahiko Sakamoto2, Shigeru Maita2 Naoya Kato2, 2Hikaridenshi Company, LTD
Yasuaki Yorozu3, Takashi Yasui3, 3Core Technology R&D Center, Ricoh Institute of Technology, Ricoh Company, LTD

1. Abstract

- 0.5mm-high composite inductor offers 1~10 W solution in a 1~10 MHz range
- Ms=1.64 Tesla amorphous Fe-B-Si-C magnetic flake composite
- Planar toroidal inductor: Thinner than bulky ferrite inductors while thicker than sputter-deposited thin film inductors because of thick film composite of a high saturation moment magnetics.
- Integrated to a Buck converter module (1mm high, 6 MHz, 92%)

2. Objective

- Spec out converter performance
- Develop amorphous Fe-B-Si-C flake
- Design magnetic flake-aligned composite planar inductor
- Align magnetic flakes in inductor
- Examine inductor performance
- Examine SiP DC-to-DC converter performance

3. Fe-B-Si-C flake

- Saturation magnetization: 1.64 T (Fe-Si-B-C > Co-Fe-B-Si)
- Stress release annealing applied.

4. Magnetic flake alignment in inductor

- Aligned flakes along the flux line by physical force (Pressure is applied)

5. Buck converter efficiency

- Automatically optimize a number of phase (1 to 4 phase), depending on load.

6. Achieved performance

- Planar Inductor @6 MHz
 - Rated power: 5 W, Current: 1.4 A
 - Size: 3.0 (W) x 3.0(L) x 0.5 (H) mm³
 - L = 0.5 μH, R_DC<0.1 Ω, R_AC<2.0 Ω

- Buck Converter Module
 - Low profile : 1mm height
 - IN: 2.3~5.5 V, OUT: 0.6~3.3 V
 - Maximum Output Current : 1A
 - 6MHz switching frequency in PWM mode
 - Maximum efficiency : 92 % (3V/4V)
- Autonomous current share (1 to 4 phase) without external controller

Some More Details

- Flake & fabrication
- Inductor Performance
- Multi-phase converter performance
 - Will be published elsewhere

Corresponding author:
Masahiro Yamaguchi, Tohoku University
E-mail: yamaguti@ecei.tohoku.ac.jp