Fully Integrated SC DC-DC: Bulk CMOS Oriented Design

Hans Meyvaert
Prof. Michiel Steyaert

17 Nov 2012
Outline

- Towards monolithic integration
- CMOS as technology vehicle
- Techniques for CMOS DC-DC
- Conclusions
TOWARDS MONOLITHIC INTEGRATION
Driving aspects

- Limited I/O pads
- Multiple Voltage Rails
- Power Saving Techniques
- Multicore Granularity
- High Supply Current
- Supply Impedance

Monolithic integration
CMOS AS TECHNOLOGY VEHICLE
Why CMOS?

- When there are other superior technologies such as GaN and GaAs
 - Superior parameters
 - But more expensive

- It depends on the specific requirements
- There is no single technology that can replace all others
CMOS offers compact coexistence of power supply and load

- Compatibility
- Size
- Cost
- It’s already available

CMOS also offers parasitics ...

Required for true granularisation

In this case it is not a matter of being the best in class, but to be (more than) sufficient by coping for parasitics and having the benefit of low cost.
TECHNIQUES FOR CMOS DC-DC
Bottom Plate Parasitic

- Concerns parasitic coupling of flying capacitor
 - 2 possible locations in a 2/1 step-down
Parasitic Capacitor

- Typical bottom plate parasitic in CMOS
Flying Well

- Reduces C_{par} from >5% to 1.3% in this case
Intrinsic Charge Recycling

- Concerns parasitic coupling of flying capacitor
 - 2 possible locations in a 2/1 step-down
Intrinsic Charge Recycling

An output perspective

Without Recycling

\[\Phi_a \]
\[V_i \quad C_{fly} \quad V_o \]
\[C_{par} \]

\[\Phi_b \]
\[C_{par} \quad + \quad - \quad V_o \quad C_{fly} \quad C_o \]

With Recycling

\[\Phi_a \]
\[+ \quad - \quad C_{fly} \quad V_o \]
\[C_{par} \]

\[\Phi_b \]
\[C_{par} \quad - \quad + \quad V_o \quad C_{fly} \quad C_o \]
Intrinsic Charge Recycling

\[
E_{O,C_{par},REG} = C_{par} (\gamma V_{o,id})^2
\]

Output perspective

With Recycling

\[\Phi_a\]

\[\Phi_b\]

Without Recycling

\[\Phi_a\]

\[\Phi_b\]
Intermezzo: $V_{o,id}, V_o$ and γ

Thevenin Model

$$V_{th} = \frac{1}{2} V_i = V_{o,id}$$

$$R_{th} = \sqrt{R_{SSL}^2 + R_{FSL}^2} \quad [5]$$

Voltage drop over R_{th} due to voltage divider formed by R_{th} and a R_L. This ratio equals γ.

$micas$

17-Nov-12

PowerSoC 2012
Intrinsic Charge Recycling

\[E_{O,C_{par},\text{REG}} = C_{par}(\gamma V_{o,\text{id}})^2 \]

\[E_{O,C_{par},\text{ICR}} = C_{par} V_{o,\text{id}}^2(\gamma^2 - 2\gamma) \]
Intrinsic Charge Recycling

An input perspective

Without Recycling

\[\frac{1}{2}V_i = V_{o, id} \]

\[V_o = \gamma V_{o, id} \]

With Recycling

\[\Phi_a \]

\[\Phi_b \]
Intrinsic Charge Recycling

An input perspective

Without Recycling

\[E_{I,C_{\text{par}},\text{REG}} = \frac{C_{\text{par}}(\gamma V_{o,\text{id}})^2}{\gamma} \]

With Recycling

\[\Phi_a \]

\[\Phi_b \]
Intrinsic Charge Recycling

An input perspective

Without Recycling

\[E_{I,C_{par},REG} = \frac{C_{par}(\gamma V_{o,\text{id}})^2}{\gamma} \]

With Recycling

\[E_{I,C_{par},ICR} = C_{par}V_{o,\text{id}}^2(4 - 2\gamma) \]
The combined perspective

Trade-off: $\Delta E_{out} - \Delta E_{in} \geq 0$

\[
\left(-E_{O,Cpar,ICR} + E_{O,Cpar,REG} \right) - \left(E_{I,Cpar,ICR} - E_{I,Cpar,REG} \right)
\]

= ...

= $C_{par} V_{o,id}^2 (5\gamma - 4)$

The trade-off is only function of γ!

→ Any capacitor type

→ Any V_i
The combined perspective
Intrinsic Charge Recycling

The combined perspective
Intrinsic Charge Recycling

- **Summary**

 ✓ f_{sw} constant $\rightarrow P_o \uparrow$

 ✓ P_o constant $\rightarrow f_{sw} \downarrow$
Other forms of charge recycling

- Voltage domain recycling by serial voltage domains
System Architecture

- Converter core
 - Non overlap generation
 - Level shifting
 - Buffering
 - 2 voltage domains
 - ground..V_o
 - V_o..V_i
 - 1 C_{fly}: P-moscap
 - 4 switches
System Architecture

- On-chip 21 tap VCO
- 21 converter cores spread out of phase
- $C_{\text{fly, total}}$: 12 nF
- $W_{\text{switch, total}}$: 11.5 cm
- Integrated linear regulator for start-up
Chip microphotograph + layout

1510um

Core

Switches

C1a

C1b

C1c

C1d
Measurements

- Closed loop
- V_{in}: 2.4V
- V_{out}: 1V
- P_o range: 250-1050mW
- Peak efficiency: 65% at 1W
- Battery lifetime extension (EEF [3]): +36%

![Graph showing efficiency vs. output power](Image)
Measurements

- Open loop
- Maximum P_{out}: 1.65W
- Maximum η: 69%
Measurements

- Open loop load regulation
 - -0.175 Ω
Comparison with state of the art

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>capacitive</td>
<td>capacitive</td>
<td>inductive</td>
<td>capacitive</td>
<td>capacitive</td>
</tr>
<tr>
<td>Control</td>
<td>closed external</td>
<td>external f_{sw}</td>
<td>SCOOT</td>
<td>discrete step loop</td>
<td>closed external</td>
</tr>
<tr>
<td>Power density</td>
<td>0.86W/m²</td>
<td>7.4W/mm²</td>
<td>0.21W/mm²</td>
<td>1.12W/mm²</td>
<td>0.77W/mm²</td>
</tr>
<tr>
<td>$P_{out,max}$</td>
<td>0.33W</td>
<td>8.88mW</td>
<td>0.8W</td>
<td>10.6mW</td>
<td>1.65W</td>
</tr>
<tr>
<td>η_{max}</td>
<td>85%</td>
<td>90%</td>
<td>58%</td>
<td>64%</td>
<td>69%</td>
</tr>
<tr>
<td>Tech option</td>
<td>SOI</td>
<td>SOI, deep trench caps</td>
<td>Bulk CMOS</td>
<td>Bulk CMOS, metal gate</td>
<td>Bulk CMOS</td>
</tr>
<tr>
<td># interleaving</td>
<td>32</td>
<td>1</td>
<td>4</td>
<td>32</td>
<td>21</td>
</tr>
</tbody>
</table>
Comparison with state of the art

![Graph showing comparison between output power and power density for different technologies, including This Work, [1], [2], [3], and [4].]
CONCLUSIONS
Conclusions

- Cheap and power dense integrated DC-DC converters facilitate on-chip power management
- The passives are the bottleneck!
 - $\approx 90\%$ of die area
- Bulk CMOS is potential vehicle for PowerSoC
 - Flying Well
 - Intrinsic Charge Recycling
 - Multiphase Interleaving
 - Voltage Domain Stacking
- Application domain
 - High performance: solving I/O problem
 - Low performance: implementing energy saving techniques
Acknowledgement

- **NXP**
 - Henk Jan Bergveld
 - Gerard Villar Pique
 - Patrick Smeets
 - Leo Warmerdam

- **Micas Colleagues**
 - Dr. Tom Van Breussegem (ICsense.com)
 - Dr. Mike Wens (MinDCet.com)
 - Piet Callemeyn
 - Aki Sarafianos

QUESTIONS?

- Thank you!