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A Low Power (Portable) Application – Rogers Portable Radio

• Allowed a large number of 

households to have daily access to 

information  

• Reduced power consumption by 

using more efficient electronic tubes  

Main motivation: to reduce the volume and 

weight of the power supply, by far the largest 

part of previous radios
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http://www.ifixit.com/Teardown/iPad-FCC-Teardown/2197/1

iPad - teardown

• Dc-dc SMPS occupy between 20% and 80% of the total volume in 

modern electronics devices, communication equipment, computers…

• Most of the volume occupied by passives and heat sinks  

Low Power SMPS in Portable/Consumer Electronics 
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Part 1

Part 2

Outline: Two Parts of Presentation
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Conventional Methods for Volume Minimization

• Operation at high switching frequencies

• Efficiency optimization = flat and high efficiency curve

• Fast dynamic response of the controller + plug and play operation

Load current

All three of these goals can be acomplished
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� The duty ratio of a core resolution 

(high-frequency) DPWM is varied 

over several switching cycles to 

achieve high effective resolution.

Ultra High-Frequency High-Resolution Digital Controller IC

� The averaging is performed by the 

switching converter itself (LC filter)

� The output measured with a 

moving windowed ADC producing 

just few error signals

� Processing unit reduced since it 

also operates over a small error 

range 
[1] Z. Lukic, N. Rahman, A. Prodić, “Multibit Σ–∆ PWM Digital Controller IC for DC–DC Converters Operating at Switching 
Frequencies Beyond 10 MHz,” IEEEE Transactions on Power Electronics, Vol.22, Issue.5, October 2007, Pg. 1693-1707 (.pdf).
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Ultra High-Frequency Digital Controller IC Results

DPWM switching frequency Programmable, 400 kHz to 

150 MHz

DPWM effective resolution 10-bit

Controller area 0.14 mm2 

Σ-∆ Modulator current 

consumption

Sub 10 µA/MHz

12.6 MHz 150 MHz



November 17th, 2012
Laboratory for Power Management and Integrated SMPS

8University of Toronto, Rogers ECE Department

Minimum Deviation Controller IC [2]

Load current

[2] A. Radic, Z. Lukic. A. Prodic, and R. de Nie, “Minimum Deviation Digital Controller IC for DC-DC Switch-Mode 

Power Supplies,” IEEEE Transactions on Power Electronics, Vol.28, Issue.2, February 2013.
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Conventional Controller Design

Wide-bandwidth loop

Fast Controller Action

Reduced C Volume with a 

Small Output Deviation

Frequency        time

Time         deviation = size

= Ultimate Goal
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Time-Optimal Controller

Wide-bandwidth loop

Fast Controller Action

Reduced C Volume with a 

Small Output Deviation

Frequency        time

Time         deviation = size

= Ultimate Goal



November 17th, 2012
Laboratory for Power Management and Integrated SMPS

11University of Toronto, Rogers ECE Department

VCQ ∆=

Time-Optimal Control

QoffQonQ +=

�Overly large peak 

inductor current, i.e. 

inductor might need to be 

overdesigned

� Fairly complex 

calculations

� Need to know LC 

values

� Very sensitive to time 

delays
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Minimum Deviation Controller

Wide-bandwidth loop

Fast Controller Action

Reduced C Volume with a 

Small Output Deviation

Frequency        time

Time         deviation = size

= Ultimate Goal
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Laboratory for Power Management and Integrated SMPS

Minimum (Optimum) Deviation Controller

�No current overshoot, no need to know converter parameters, 

simple calculations
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Laboratory for Power Management and Integrated SMPS

� Only needs to remember D before transient 

Minimum (Optimum) Deviation Controller



November 17th, 2012
Laboratory for Power Management and Integrated SMPS

15University of Toronto, Rogers ECE Department

Self-Calibrating SAR Track & Hold ADC
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Dual Sampling Mechanism
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Practical Implementation (500 kHz VRM)

Inductor current

Gate drive signal

Output voltage

Fast PID Optimum Deviation
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10 MHz Mixed Signal CPM Power Module with Instantaneous 

Efficiency Optimization [3]

Efficiency 

Optimizer 

[3] A. Parayandeh, B. Mahdavikkhah, S.M. Ahsanuzzaman, A. Radic, A. Prodic, “A 10 MHz mixed-signal CPM controlled DC-DC 

converter IC with novel gate swing circuit and instantaneous efficiency optimization,” in Proc. IEEE ECCE, 2011, Pg. 1229-1235
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IC Block Diagram

Incorporates:

1. Novel gate swing 

circuit

2. Modified  high-

resolution charge-pump 

based  DAC

3. Optimized design of 

current sensing circuit 

(senseFET)

1

3

2
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Low-Power High-Frequency SensFET

GBW reduced since the amplitude is always relatively large (but not 

the losses)
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Specifications Value Units

CMOS Process 
0.13 µm

Area
2.5 mm2

Input Voltage 
2.5 V

Output Voltage 
0.8-1.3 V

Rated Load  
500 mA

Filter L,C
400, 0.9 nH,µF

Switching Frequency ,
10 MHz

Ron Pmos , Nmos
0.26 , 0.234 Ω

Supply  Analog , Digital 
1.2, 2.5 V 

Peak Efficiency 
83 %

CPM Controller Current 
500 µA

PFM Controller Current 
10 µA

Digital Core
200 µA 

IC-Implementation
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Experimental Results
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Reaching the Physical Limitations Through  

Hardware-Efficient Mixed-Signal ICs 

✔ High-frequency of operation

✔ Optimal response with plug and 

play operation 

✔ Relatively flat efficiency curve 

even during load changes

Load current
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Moving Forward

Advanced Low-Volume SMPS Topologies
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Moving Forward

Overall volume (weight) contribution

� Reduce volume of 

reactive components 

through advanced 

converter and control 

topologies

� Allow weight (cost) 

distribution where the 

silicon are will be 

larger than today but 

the overall volume 

smaller

� No penalty in efficiency
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Flyback Transformer Based Buck (FTBB) with Transient 
Energy Recycling [4]

[4] Jing Wang; Prodic ́, A.; Wai Tung Ng, “Mixed-Signal-Controlled Flyback-Transformer-Based Buck Converter With Improved 

Dynamic Performance and Transient Energy Recycling,” IEEE Transactions on Power Electronics, Vol. 28, Issue. 3, February 

2013. 
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Laboratory for Power Management and Integrated SMPS

Flyback Transformer Based Buck with Transient Energy 
Recycling

Vout(t)
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Cout
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The buck inductor is replaced with a flyback transformer, and a 

single extra switch inside the conduction path
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Laboratory for Power Management and Integrated SMPS

FTBB – Principle of Operation

Light-to-heavy

Heavy-to-light

Current slew rate of magnetizing 

inductance is -Vg/Lm rather than -Vout/Lm

Also, the transient energy is recycled 

back to the source – two fold effect

The inductance is reduced to its leakage 

value
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Conventional Minimum-Deviation vs. FTBB

Conventional buck
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Conventional Buck FTBB Converter

FTBB converter
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Load-Interactive Steered-Inductor DC-DC Converter

with Transient Energy Recycling [5]

[5] S.M. Ahsanuzzaman, A. Parayandeh, A. Prodic, D. Maksimovic, “Load-interactive steered-inductor dc-dc converter with 

minimized output filter capacitance,” in Proc. IEEE Applied Power Electronics Conference (APEC ’10), 2010, Pg. 980-985. 
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� Relies on improved interaction with the digital load

� Theoretically, allows selection of the output capacitor based on the 

output ripple criteria only.

Load Interactive SMPS with Current Steering
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� Light-to heavy pre-transient 

condition current “pump-up”

� Slew rate is Vg/L vs (Vg-Vout)/L 

Steered Inductor Buck-Boost Converter

•Heavy-to-light transient ,the 

current is steered away from the 

capacitor to the source) 

•The current slew-rate is –Vg/L 

(was   -Vout/L in buck mode)

• Energy recycled in this cycle
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Theoretically, allows reduction of the output capacitor to ripple-

limited value

Load Transient Performance



November 17th, 2012
Laboratory for Power Management and Integrated SMPS

34University of Toronto, Rogers ECE Department

Buck Converter with Merged Capacitive Attenuator [6]

[6] A. Radic, A. Prodic, “Buck Converter With Merged Active Charge-Controlled Capacitive Attenuation,” IEEE Transactions 

on Power Electronics, Vol. 27, Issue. 3, March 2012. 
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Common Approach: Serial Connection of a Switch Cap 
Converter  And a Converter with Inductor 

1. Reduced output filter volume 1. Bulky intermediate balancing cap

2. Extra switches in conduction path (at 

least 4) and at least 6 switches total

3. Requires two control loops
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-All switches rated at ½ Vmax

of the conventional buck (no 

extra conduction losses)

-Switches are shared 

between the cap stage and 

buck

-Lower switching losses 

than of the conventional 

buck

-Centre tap voltage 

maintained constant with the 

help of buck inductor

- Better transient response 

than the time-optimal buck

Buck Converter with Merged Capacitive Attenuator
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gin vv <2

gin vv ≥2

gin vv ≤2

gin vv >2

Centre-tap voltage controller 

operation. Skips regular sequence and 

takes the charge from the cap with 

larger voltage until balance is 

achieved. 

Modes of Operation, Ideal and Practical System
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Experimental Results: Comparison with Conv. Buck

For a 5V to 1 V buck 44% smaller inductor and 35% smaller output

capacitor   
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Experimental Results: Comparison with Con. Buck 

Both transient response and 

efficiency improved 
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Extension to 2-Phase [7] 

L1 takes the charge from the top inductor and L2 from the bottom 

[7] B. Mahdavikhah, P. Jain, A. Prodic, "Digitally controlled multi-phase buck-converter with merged capacitive attenuator," 

Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE , vol., no., pp.1083-1087, 5-9 

Feb. 2012 
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Many other examples ……
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Conclusion

Digital control allows us to use advanced converter topologies and drastically 

reduce the volume of SMPS while improving efficiency at the same time. 
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Thank you




