Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain
Circuit Research Labs
Intel Corporation
OR

November 27, 2012
1. Introduction

2. Motivation

3. Switched Capacitor Voltage Regulator

4. Summary
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

Outline

1 Introduction

2 Motivation

3 Switched Capacitor Voltage Regulator

4 Summary
Introduction

Recent design trends in phone/tablets

- User experience is key – in addition to battery life
- Requires bursts of high performance
- and, freeing up this power budget by minimizing idle power

What does this translate to?

- Performance autonomy of modules (e.g. cores), at low power
 - Highly granular voltage domains, voltage scaling
- Minimize idle power consumption through design
 - V_{min} reduction techniques
 - Near v_t (NTV) operation
 - Optimal C_{dyn} through design at optimum voltage

Need: Autonomous, highly granular voltage domains
Introduction

Recent design trends in phone/tablets
- User experience is key – in addition to battery life
- Requires bursts of high performance
- and, freeing up this power budget by minimizing idle power

What does this translate to?
- Performance autonomy of modules (e.g. cores), at low power
 - Highly granular voltage domains, voltage scaling
- Minimize idle power consumption through design
 - V_{min} reduction techniques
 - Near v_t (NTV) operation
 - Optimal C_{dyn} through design at optimum voltage

Need: Autonomous, highly granular voltage domains
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Recent design trends in phone/tablets
- User experience is key – in addition to battery life
- Requires bursts of high performance
- and, freeing up this power budget by minimizing idle power

What does this translate to?
- Performance autonomy of modules (e.g. cores), at low power
 - Highly granular voltage domains, voltage scaling
- Minimize idle power consumption through design
 - V_{min} reduction techniques
 - Near v_t (NTV) operation
 - Optimal C_{dyn} through design at optimum voltage

Need: Autonomous, highly granular voltage domains
Exploit DVFS fully: energy savings with 80% efficient VR

Shared rail in black
\[\alpha \triangleq \% \text{ time the block is in high frequency mode (HFM), } V_{cc} = V_{max} \]
\[\beta \triangleq \% \text{ of idle time the shared rail allows } V_{cc} = V_{min} \text{ else } V_{max} \]

Dedicated rail in color
Red: \(V_{in} \approx V_{max} \), VR bypassed at HFM when \(V_{cc} = V_{max} \)
Blue: \(V_{in} \gg V_{max} \), VR incurs losses at HFM when \(V_{cc} = V_{max} \)

Dedicated voltage regulators (VR) are the key enablers
First glimpse - what does it take per domain?

Circuit Needs
Dedicated VR
Level shifters
Retention buffers
Isolation Circuits
Autonomous DVFS
First glimpse - what does it take per domain?

Circuit Needs
- Dedicated VR
- Level shifters
- Retention buffers
- Isolation Circuits
- Autonomous DVFS

Rail Needs
- Dedicated grid
- Dedicated decap
First glimpse - what does it take per domain?

Circuit Needs
- Dedicated VR
- Level shifters
- Retention buffers
- Isolation Circuits
- Autonomous DVFS

Rail Needs
- Dedicated grid
- Dedicated decap

System Needs
- Big always-on rail
- Validation complexity
- Cross domain speed paths

First glimpse - what does it take per domain?
First glimpse - what does it take per domain?

Circuit Needs
- Dedicated VR
- Level shifters
- Retention buffers
- Isolation Circuits
- Autonomous DVFS

Rail Needs
- Dedicated grid
- Dedicated decap

System Needs
- Big always-on rail
- Validation complexity
- Cross domain speed paths

Circuit area/complexity versus net power savings
Can we define domain boundary for net benefits
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

Voltage Domain Granularity

Figure 1. Proposed Capacitive-Coupling (CC) WWL boosting along with Self-Induced VCC Collapse (SIC) for write VMIN reduction

Rail reduction
Voltage Domain Granularity

Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

Rail reduction turbo & low power

Figure 1. Proposed Capacitive-Coupling (CC) WWL boosting along with Self-Induced VCC Collapse (SIC) for write VMIN reduction

Figure 1

PSoC 2012, Nov 17
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

Voltage Domain Granularity

Per Block

SOC

Per Partition

CPU

Within custom cells

0.3 - Vmax

CPU/GPU

0.3 - Vmax

PLL

1.2V

1.2V IO

0.3 - Vmax

SRAM

0.3 - Vmax

PMU

1.8V

1.8V IO

Rail reduction	 turbo & low power	 SRAM Vmin reduction

Figure 1. Proposed Capacitive-Coupling (CC) WWL boosting along with Self-Induced VCC Collapse (SIC) for write VMIN reduction

PSoc 2012, Nov 17 7 / 13
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

VR needs

[2] Courtesy: Sriram V.; data from NTV core

- CMOS compatible VR
- Digital process friendly, low area overhead
- High conversion efficiency across wide range of v,i
- Fast response to take advantage of even brief idle periods
- Low leakage/ standby power
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

Switched Capacitor Power Stage

Series Parallel circuit for best capacitance utilization w.r.t \(R_{out} \)
Lower bound Hysteretic Control

- Simplest control for low power overhead (30mW prototype) [4]
- Comparator leverages latch based sense amplifier design [3]
- Completely 'digital' for low area overhead
- No start up circuit required
- No assist needed for +ve VID transition
- Ripple is a function of V_{out}, I_{load}

Clock generation for 8 phase interleaving
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

Simulation Results: Efficiency

Control and switching losses dominate at lower power
Adaptive switch scaling and higher power designs approach blue
Summary

- CMOS compatible VR
- Significant power reduction in the load from multi Vcc techniques
- Low area overhead, good efficiency across 0.5V-1.05V
- Extremely fast response, scalable, suitable for DVFS
Acknowledgements

- Jaydeep Kulkarni
- Muhammad Khellah
- Jim Tschanz
- Ken Ikeda
- Tze Hwa
- Krishnan Ravichandran
- Greg Taylor
- Alex Kern (TMG)
- Tomm Aldridge
- Ram Muthukaruppan
- Rabiul Islam
- Ahmed Abdelmoati
- S. Sanders (UC, Berkeley)

- Bibiche Geuskens
- Stephen Kim
- Vivek De
- Sahajananda Reddy
- Nguyen Trang
- Rick Forand
- Mathew Nazareth
- Curtis Tsai (TMG)
- Veera Pitchia
- CV Ramana
- Ethan Shih
- Loai Salem
- Michael Seeman

This work was in part funded by the U.S. Government under contract number HR0011-10-3-0007
Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Rinkle Jain

Introduction

Motivation

Switched Capacitor Voltage Regulator

Summary

References

J. Kulkarni, et. al; Capacitive-Coupling Wordline Boosting with ..., ISSCC, 2012

S. Jain, et. al; A 280mV to 1.2V Wide Operating Range IA-32 ..., ISSCC, 2012

R. Jain, S. Sanders, A 200mA Switched Capacitor Voltage Regulator on 32nm ..., European Conf on Power Electronics, 2011, pp.1–10

M. Seeman, R. Jain; Single-bound hysteretic regulation ..., US Patent 20110074371, filed August, 2009
