

ECE ILLINOIS

Soft Charging Switched Capacitor CMOS Power Converters - Increasing Efficiency and Power Density Using a Merged Two-Stage Architecture

Robert Pilawa-Podgurski PowerSoC 2012

- Professor David Perreault (MIT)
- Ryan May (UIUC)
- Yutian Lei (UIUC)
- Interconnect Focus Center, a DARPA and SRC program

Introduction

Energy processing electronics

- No Moore's law
- Often dominate electronics size, weight

ILLINOIS

- Switches rated to block full input voltage
 - Low switching frequency, low control bandwidth
 - Large passive components

Can we achieve high voltage blocking capability and high switching frequency?

Converter topologies

- Inductor based
 - Excellent regulation
 - Difficult to integrate on die
 - Desire small inductors
 - Require high switching frequency
 - Large step-down at high frequency is challenging

LINOIS

Capacitor based

- High power density
- High efficiency
- High on-chip capacitance available
- Large step-down possible at high frequencies
- Poor regulation
- Poor energy utilization

Can we combine the benefits of each converter topology?

$$\mathsf{E}_{\mathsf{capacitor}} = \frac{1}{2} \, \mathrm{CV}^2$$

- Switched-capacitor transformation stage
 - Step down to low voltage at fixed conversion ratio
 - High efficiency at specified conversion ratio
- Magnetic fast regulation stage
 - High frequency regulation with low-voltage buck converter, small inductor
 - Provides high bandwidth regulation and additional step-down

Series Parallel SC Converter Example

- Switched capacitor stage limitations
 - Poor energy utilization in switched-capacitor stage

- To minimize loss, must keep capacitor voltage ripple small
 - Use big capacitors
 - Operate at high switching frequency

M.D. Seeman and S.R. Sanders "Analysis and Optimization of Switched-Capacitor DC-DC Converters," IEEE Transanctions on Power Electronics, March 2008.

$$E_{diss} = \frac{1}{2}C(\Delta V)^2$$

Soft Charging Operation

$$E_{diss} = \frac{1}{2}C(\Delta V)^2 \qquad \qquad E_{diss} = \frac{1}{2}C(\Delta V)^2$$

Controlled charging current

Soft Charging Operation

- Controlled charging current
- Recover energy that is normally dissipated

LLINOIS

- Charge/discharge capacitors via regulation stage
 - Recover energy otherwise lost (soft charging)
 - Enable large ripple voltage on capacitors
 - Requires new control methods

R.C.N. Pilawa-Podgurski, D.M. Giuliano, and D.J. Perreault "Merged Two-Stage Power Converter Architecture with Soft Charging Switched-Capacitor Energy Transfer," IEEE Power Electronics Specialists Conference, 2008

Fully Integrated 180 nm CMOS Converter

- Transformation stage: 5 V thick gate oxide devices, 22 uF offchip capacitors. F_{sw} = 2-200 kHz
- Regulation stage: 2 V devices, off-chip inductor and output capacitor. F_{sw} = 10 MHz
- All power devices, control and startup circuitry on-chip

CONVERTER SPECIFICATIONS

Input Voltage Range	4.5-5 V
Output Voltage Range	1-1.3 V
Output Power Range	0.3-0.8 W
SC Switching Frequency	2-100 kHz (load dependent)
Buck Switching Frequency	10 MHz
Peak Efficiency	81%

ILLINOIS

R.C.N. Pilawa-Podgurski, D.J. Perreault, "Merged Two-Stage Power Converter with Soft Charging Switched-Capacitor Stage in 180 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 47, No 7, pp. 1557-1567, 2012

Transformation Stage Control Implementation I I L L I N O I S

Regulation Stage Control Implementation

Experimental Waveforms

ILLINOIS

Feedforward control keeps $V_{_{out}}$ steady despite large ripple on $V_{_{unreg}}$

ILLINOIS

Efficiency is limited by packaging parasitics

- Better packaging
 Industry solutions exist
- Series Parallel SC topology is not optimum
 - Lower switch stress in Dickson topology
- Advanced control
 - Predictive control
 - Current-mode control of regulation stage
- More advanced CMOS process

ILLINOIS

- Demonstrated soft charging operation in series-parallel SC converter
- Can soft-charging techniques be used for other SC topologies?
 - Dickson topology yes, with modifications
 - Ladder topology no
- Can determine suitability using charge flow vectors
 - Ongoing work

Dickson topology

Ladder topology

- Two-stage power converter architecture
 - Make use of CMOS device characteristics
 - Separate transformation and regulation functions
 - Achieve large voltage step down and high bandwidth control
- Soft charging operation
 - Recover energy in regulation stage
 - Enable large voltage ripple on capacitors
 - Smaller size, higher efficiency
 - Requires new control implementations
- Experimental prototype
 - Achieve good performance
 - Efficiency in prototype is limited by packaging parasitics
- Exploring additional SC topologies for soft charging operation