High-frequency LDMOS in 0.18um BCD Technology for Power Supply-On-Chip

IL-Yong Park, Dongbu HiTek
Ashraf Lotfi, Enpirion
Introduction

• DC/DC converter market requires high efficiency and high current driving capability

• Power SOC (Supply-On-Chip) requires
 • high efficiency and fast switching DC/DC converter
 • integrated passives (inductor)

• Fast switching DC/DC converter allows to reduce inductor size and increase the power density per unit volume
Introduction

• High frequency LDMOS achieves
 • low parasitic capacitance
 • fast switching speed realizing low switching power dissipation
 • DC power dissipation might higher than conventional low Rsp LDMOS

• Dongbu HiTek developed high frequency LDMOS with thin gate oxide, short gate length, high breakdown voltage in 0.18um Analog CMOS/BCD technology
Monolithic DC/DC Converter (2002, ETRI)

0.8μm CMOS + DE(Drain-Extended)CMOS Process

Waveforms of FET switching voltage and thin-film inductor current when \(V_i = 3.5 \) V, \(V_o = 6.0 \) V, and the operating frequency was 8 MHz.

Micro inductor: 0.5 ~ 0.6 uH
Magnetic Material; NiFe (2.5μm)

Power Efficiency: 72%
AN180 Process

- Process Modularity
 - To save development time for the process and optimize the mask layer
 - Use 1 process platform and provide several process options
 - Process modularity is the Key feature

* Currently BD180LV (non-epi) version merged into AN180

<0.18um modular technology platform for power management application>
AN180 Process

- **Process Modularity**
 - 5V CMOS baseline
 - HVCMOS and iso CMOS
 - 1.8V CMOS option
 - HSR, MIM option
 - Thick Cu option
 - Mod-density EEPROM
 - High-density EEPROM
 - **High Frequency LDMOS**
 (additional implants)

Process modularity of 0.18um 30V AN180 process
Process Features

- 4 additional implant masks for HF-LDMOS;
 - 2 mask for NLDMOS
 - 2 mask for PLDMOS
 - No additional thermal budget → fully compatible with existing AN180 process
- For fast switching
 - 30Å thin gate oxide for Vgs power scaling
 - 0.26µm channel length
 - Drift implant after gate formation for small gate-to-drain overlap capacitance
- High driving current capability
 - Short channel length even at high drain voltage without punch-through
 - Optimized halo implant at source side
Process Flow

- STI Module
- CMOS Well Formation w/ deep-NWELL
- GATE Module
- N-LDD Module
 - P-Body & N-Drift for NLDMOS LSD/HSD
 - P-LDD Module
 - N-Body & P-Drift for PLDMOS
 - N+SD/P+SD Module
 - Salicide Blocking
 - BEOL Module

Additional implants for HF-LDMOS module
Device Structure

• Dedicated Implant Layers are used
 • 2 layers for P-Body and N-Drift of NLDMOS
 • 2 layers for N-Body and P-Drift of PLDMOS
• PWELL/NWELL extension
 • For the RESURF action, WELL is extended to the middle of drift region
Device Structure

- Single-sided high tilt implant
 - To prevent punch-through breakdown even at high voltage of 20V
 - Source region width is limited by shadowing effect
- Optimized 2-step drift implant
 - At surface region of N-Drift for better HCI immunity
Summary of Electrical Performance

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12V nLD LSD</td>
</tr>
<tr>
<td>L_{CH}</td>
<td>μm</td>
</tr>
<tr>
<td>V_T</td>
<td>V</td>
</tr>
<tr>
<td>$I_{D,SAT}$</td>
<td>$\mu A/\mu m$</td>
</tr>
<tr>
<td>BV_{DSS}</td>
<td>V</td>
</tr>
<tr>
<td>R_{SP}</td>
<td>m$\Omega\cdot \text{mm}^2$</td>
</tr>
<tr>
<td>I_{OFF}</td>
<td>p$A/\mu m$</td>
</tr>
<tr>
<td>C_{ISS}</td>
<td>fF/\mu m</td>
</tr>
<tr>
<td>C_{OSS}</td>
<td>fF/\mu m</td>
</tr>
<tr>
<td>$F_{T,MAX}$</td>
<td>GHz</td>
</tr>
<tr>
<td>F_{MAX}</td>
<td>GHz</td>
</tr>
</tbody>
</table>
12V HF-LDMOS I-V Characteristics

<DC output characteristics at Vgs=0.6V, 1.2V and 1.8V>

- Stable I-V characteristics up to 14V of Vds at 1.8V of Vgs
 - On-state BV: 18.5V, Off-state BV: 20V
- Current capability
 - NLDMOS $I_{dsat} = 500 \mu A/\mu m$ at $V_{gs}=1.8V$ and $V_{ds}=12V$
 - PLDMOS $I_{dsat} = 200 \mu A/\mu m$ at $V_{gs}=-1.8V$ and $V_{ds}=-12V$
12V HF-LDMOS – BVdss & Ft

- Over 20V off-state breakdown voltage with low leakage
- Ft and Fmax characteristics according to Vgs at Vds=6V
 - Ft,max/Fmax = 37.2GHz/66.9GHz for 12V RF NLDMOS LSD
 - Ft,max/Fmax = 12.9GHz/38.4GHz for 12V RF PLDMOS
12V HF-LDMOS – Reliability (HCI)

- Wide electrical SOA enough for operation up to 15V of V_{ds}
- Long-term HCI results:
 - I_{dlin} drift 6.7% after 150Ksec stress at $V_{ds}=12V$ and $V_{gs}=1.8V$

<TLP I-V characteristics; pulse width=100ns> <Long-term HCI test at $V_{ds}=12V$, $V_{gs}=1.8V$>
12V HF-LDMOS – Reliability (HTRB)

- Negligible BV & Off-leakage shift with stress time during Hot Temperature Reverse Biasing stress test
- Customer: product level HTOL (up to 1500 hrs) qualified

<BVdss curve with stress time; stress condition 150°C, Vds=13.2V>
BV vs. Ft comparison

[BVdss vs. Ft](#)

<table>
<thead>
<tr>
<th>This Work</th>
<th>[1] Z. Lee et al., IEEE BCTM, pp.1-4, 2006</th>
</tr>
</thead>
</table>
Application – ENPIRIION DC/DC Converter

- Enpirion unveils the **EN2340QI** 4 Amp, **EN2360QI** 6 Amp, **EN2390QI** 9 Amp, and **EN23F0QI** 15 Amp devices further broaden Enpirion’s extensive PowerSoC (power-system-on-chip) portfolio by using **AN180 12V High Frequency LDMOS** and **integrated inductor**
- **EN2340QI** Measurement data (refer to datasheet)
Summary

• 12V HF-N/PLDMOS transistors with 1.8V Vgs have been developed and integrated on Dongbu HiTek 0.18µm Analog CMOS (AN180)/BCD(BD180LV) process
• Each of 2 additional implants are used to make NLDMOS and PLDMOS without adding thermal budget
• Short channel length(0.26um) and small gate-to-drain overlap capacitance are used to achieve high Ft, which can reduce the inductor size of the DC/DC converter system
• BVdss*Ft figure-of-merit
 • 744GHz*V for 12V RF NLDMOS
 • 258GHz*V for 12V RF PLDMOS
Summary (Cont.)

- Enpirion developed DC-DC converter using 12V HF-LDMOS process and integrated controller, power MOSFET, and integrated inductor into one chip realizing Power System-On-Chip (PowerSoC)
- The Enpirion shows high efficiency, highest density and reliability without compromising the performance
Thank You!

IL-Yong Park, Dongbu HiTek, ipark@dsemiusa.com
Ashraf Lotfi, Enpirion, lotfi@enpirion.com