Monolithic integrated galvanic isolation enabling energy management in Power over Ethernet applications

John Camagna

November 2012
Power Management Evolution

- **Bag of chips / Low efficiency**
- **Difficult to design**
- **Component level focus on efficiency**
- **No system view optimization**

- **System level integration**
- **High system efficiency**
- **Network management**

Green Power (components)

- **Bag of chips / Low efficiency**
- **Difficult to design**

Network Based Energy Management

- System level integration
- High system efficiency
- Network management

Energy Efficiency

Savings (Energy, Costs and Space)
Motivation for Network based Energy management

- “Scalar” power management is producing diminishing returns
 - Optimizing Vin/Vout efficiency and light load operation is no longer enough.
 - Communication is necessary between CPU and power supply system for further innovation
 - A system that can turn itself on/off when needed will always beat the best no-load architecture.

- System controllability/observe-ability become much more valuable with energy management
 - DC-DC power supply is usually a black box to the system architect.
 - Power supplies must have the ability to efficiently track the load conditions

- Spatially distributed power supplies require isolation
 - Ground loop: 600V of earth ground variation is possible within 100 meters
 - Safety: Cable cross/cable short to high voltage power cables
 - EMI

 Communication across the isolation barrier is essential to create a network power supply
Power over Ethernet
IEEE 802.3AT
Power over Ethernet

- Power supplied at the switch
- SELV
 - cable does not have to be installed by a licensed electrician
 - Existing cable plant can be used
- 100M cable can act as both a transmit/receive antenna
- 1500Vrms isolation required between Ethernet cable and switch or client circuitry
- Major applications are
 - IP phones
 - IP cameras
 - WLAN
Legacy Approach: “Bag of Chips”
Traditional PD power supply circuit design

- Inefficient power design
 - Multiple power losses in components & interconnections

- Components loosely tied together
 - Limited functionality

- Additional power loss across isolation barrier

- Opto-couplers: reliability concern

- Isolation barrier prevents integration of primary and secondary side circuits
Isolation in Silicon

• Creates ability to communicate over the Isolation Barrier
• Enables end-to-end digital power control by the system architect
• Opens significant integration possibilities
 – Most functions can be implemented in one integrated circuit
• Eliminates significant power loss

No Opto or Pulse Transformer required for feedback
Integrated Galvanic Isolation
Galvanic isolation implementation

- **Requirements**
 - POE: 1500Vrms isolation
 - Offline supplies 3000-5000Vrms
 - Medical > 5000Vrms

- **Dielectric strength of SiO2 ranges from 200-1000V/um**
 - Cost effective capacitors are in the fF range
 - Signaling levels are tiny
Noise Immunity

- Typical POE supplies can switch up to 20A
 - Causes large inductive switching events
 - Large voltage/current surges can be seen across the barrier

- Radiation
 - 100m cable forms a very effective receiving antenna
 - FM/AM/WLAN can and does couple very effectively into isolation circuitry

- Isolation modem must reject these noise sources
 - balanced circuitry
 - Active noise rejection circuitry
 - Error correction
Latency & Fault Protection

- Low latency is required for
 - Fault protection
 - Low phase margin degradation of control loop

- Bit error in the modem can translate into a broken power supply
 - Multiple redundant fault protection circuits
Modem Architecture

- Embedded error correction
- Encoding/decoder
- Driver/reciever
Architectural improvements
Full control of primary/secondary FET’s

Superior Efficiency across varying loads

<table>
<thead>
<tr>
<th></th>
<th>Diode Rectification</th>
<th>Winding-based Sync. Rectification</th>
<th>Sync. Rectification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Loads Efficiency</td>
<td>Good performance</td>
<td>Poor performance due to FET overlap</td>
<td>Good performance</td>
</tr>
<tr>
<td>Heavy Loads Efficiency</td>
<td>Poor performance due to diode conduction losses</td>
<td>Good performance</td>
<td>Good performance >90%</td>
</tr>
</tbody>
</table>

![Diagram of Diode Rectification, Winding-based Sync. Rectification, and Sync. Rectification](image)

AS1834 GreenEdge Efficiency Improvement

Poe 48Vin - 5Vout

- AS1834_GreenEdge
- Diode_Rectification
- Xfrmr_Sync_Rect

>90% Efficiency
EMC & Noise Control

- Selectable Spread-spectrum clocking on all PWMs
 - Primary & Secondary PWM synchronization across Isolation barrier
 - Reduces Power Supply Spectral Noise >15dB
- Deterministic PWM Clock phasing for lower di/dt
- External SYNC clock capability – to all Primary/Secondary PWMs
Monitoring

- Installation & maintenance costs are often more than the total HW cost
- Early replacement is often much cheaper than line down
- Line Voltage monitoring
 - Early brownout detection w/ controlled shutdown
- Line current monitoring
 - Early detection of failing HW
- Temperature sensing
 - Early detection of failing HW
- Monitoring/control also offers remote power throttling, sleep & shutdown
Network based Energy management

- There is a clear industry trend towards system/network wide power management
 - DCDC -> PMIC ->
 - POE
 - Network lighting control
 - Home appliance control

- Galvanic isolation is an enabling technology for full network control

- Much larger gains can be had at the network level than at the component level

- From designer perspective this means that the “little features” enabling power supply control and monitoring can be as important as the architecture of the power supply itself

- It is no longer sufficient for the power supply to be a black-box
 - System architect must have full control

The world is going IP, so must the power supply