Modeling and Pareto Optimization of Microfabricated Inductors for Power Supply on Chip Toke M. Andersen¹, Claudius M. Zingerli¹, Florian Krismer¹, Johann W. Kolar¹, Ningning Wang², and Cian Ó. Mathúna² ¹Power Electronic Systems Laboratory Power Electronic Systems Laboratory ²Tyndall National Institute ETH vndall Swiss Federal Institute of Technology (ETH) Zurich University College Eidgenössische Technische Hochschule Zürich Zurich, Switzerland Cork, Ireland Swiss Federal Institute of Technology Zurich Email: cian.omathuna@tyndall.ie

Email: andersen@lem.ee.ethz.ch

MAIN FEATURES

- Accurate cored racetrack inductor model
- Efficiency and power density estimates
- High evaluation speed compared to 3D FEM
- Pareto optimization procedure
- Selection of optimum inductor designs

Cored racetrack model includes:

- Influence of losses on the inductor current.
- Exponential inductor current
- Inductance estimation:
- Coreless end turn spiral L_{spiral}.
- Magnetic core *L*_{core}.
- Self-inductance of the wires in the cored part $L_{t,core,1}$.
- Mutual inductance between wires in cored part $L_{t,core,2}$.
- Winding DC losses (R_{dc})
- Winding AC losses (R_{ac})
 - Dowell's analysis
- Core hysteresis losses P_h
- Core eddy current losses P_e
- Magnetic core considered as a bus bar

Param.	Calc	. Sim.	[1]	Calc.	Sim.	[2]	Calc.	Sim.
$L_{\rm core}$ nH	[92	97		102	112	—	262	253
$L_{\mathrm{t,core}}$ nH	[28	30	—	19	19	—	63	69
$L_{\rm spiral}$ nH	[47	48		30	32	—	169	159
L nH	[167	175	160	151	163	150	494	481
$R_{\rm dc}$ mS	2 169	180	191	279	297	400	529	576
$f_{ m s}$ MHz	z 20	19	20	30	31	30	17	17
$R_{\rm ac}$ mS	2 249	344	_	315	538	—	765	882
$P_{\rm t}$ mW	1.1	1.3	1.7	4.8	5.6	9.8	33.8	36.7
$P_{\rm h}$ mW	1.7	1.1	1.7	3.5	2.3	4.3	2.4	1.5
Pe mW	2.1	1.8	2.5	8.3	7.2	7.6	2.3	2.3
$P_{\rm loss}$ mW	4.9	4.2	5.9	16.6	15.1	22.1	38.5	40.5
η $\%$	94.1	94.9	93	91.9	92.6	89.5	88.6	88.1

2218, Sep. 2009.

[3] N. Wang, T. O'Donnell, R. Meere, F. M. F. Rhen, S. Roy, and S. C. O'Mathuna, "Thin-film-integrated power inductor on Si and its performance in an 8- MHz buck converter," IEEETrans. on Magnet ics, vol. 44, no. 11, pp. 4096–4099, Nov. 2008.

Proc. of the *Electronic* System Integration Technology Conference (ESTC), Berlin, Germany, Sep. 2010, pp. 1–6.

Reference:

T. M. Andersen, C. M. Zingerli, F. Krismer, J. W. Kolar, N. Wang, C. Ó. Mathúna, "Modeling and Pareto optimization of microfabricated inductors for power supply on chip," IEEE Trans. on Power Electronics, publication pending.

