Advanced Power Management Techniques for Portable Applications

---Introduction of power-on-chip development PMU->SIMO->Embedded->Integrated->Wireless->Eco

Bill Yang Liu

Prof. Hong ZhiLiang

Weiwei Xu, Bin Shao

Analog Devices & Fudan University

Introduction of the power-on-chip development

1)PMU

2)SIMO

3)Embedded Power

4)Integrated Power

5)More

A System Solution in Portable Applications

Induct/Cap/Res	Induct/Cap/Res
Power Management Chip 1	Power Management Chip 2

Power Management Units (PMU)

- Integration to improve system flexibility
- Small package and small form of factor
 - Cost reduction
 - Package cost
 - BOM cost
 - Performance improvement
 - Efficiency
 - Easy sequence control

Product Example

Ref: C. Shi, CICC 2006, pp. 85-88

- Charger
- Switching regulators
 - buck
 - boost
 - buck/boost
 - inverter
- LDO
- Backlight driver
- Audio driver
- Ambient light sensor
- Touch panel sensor
- RTC
- Sequence control
- Voltage monitor and supervisory

Package Roadmap

WLCSP Solution

Package size is as large as die size

Performance

BOM Reduction

PMU Topics

- Trend
 - More functions/high density
 - Smaller/thinner/cheaper package
 - Higher frequency
- Issue
 - Thermal
 - Noise coupling and crosstalk
 - Design challenge in high switching frequency
 - Current sensing for current mode control

PMU Design Considerations

- System optimization, not chip optimization
- Power and analog supply separation
- Layout strategy
 - Power stage position
 - Crosstalk between channels
 - Guardring and sensitive line routing

A System Solution in Portable Applications

Induct/Cap	o/Res Induct/	/Cap/Res
	PMU	
	System Chip	

Reduce External Inductor

- Single-inductor multiple-output converter
 - Input switches : regulate total energy
 - Output switches: distribute energy
- SIDO buck example

SIMO Ripple: Fly Capacitor

- Ripples and spikes of SIDO buck converter
 - Caused by parasitic ESR and ESL
 - Inverse phase: Vrp1 = -Vrp2
- A fly capacitor across two outputs with a servo common mode control

Multi-Loop Feedback System

14

Extended-PWM (EPWM) control

Ref: W. Xu, ISSCC 2011

Loop Compensation

• Continuous vs. Discrete-time

Ref: M. Belloni, ISSCC 2008, pp. 444-445

A System Solution in Portable Applications

System in Package (SiP)

Ref: Lotfi, IEEE APEC 2010

SiP: Stack & Side

Controller + Power transistor

Controller + Power transistor

Regulator + Inductor

Ref: B. Chen, IEEE APEC 2010

SiP Technique

- Now
 - Magnetic materials on silicon
 - Inductance <100nH
 - Switching frequency > 20MHz
 - Regulator with integrated inductor
 - Assembly with standard MCM process
- Future
 - Increase the integration density
 - Multi die to single die

Embedded Power

Output Waveforms of class G

(a) Vout,pp=2V

(b) Vout,pp=4.8V

HV in MEMS

- Low Insertion Loss
- High Linearity
- High Isolation
- MEMS Gyroscope

- Coriolis signal \propto Force $\propto~V^2$
- Increased SNR

How to Generate the HV

- Inductor based
 - Expensive
 - Two pinouts
- Capacitor based
 - One pinout
 - Integrated capacitor can be used as the MEMS capacitance drops while its process improves
 - ~100uA

Integrated HV Charge Pump

Other Applications of HVCP

- E²PROM
- Flash Memory
- MEMS Switches
- Liquid Crystal Lens Driver
- More...

A System Solution in Portable Applications

Induct/Cap/Res	
PMU	
System Chip	

Motivation

 Integrated DC-DC converters are needed with SOC and on-chip power scaling

Inductance vs Frequency

Challenge: low Quality factor results in low power efficiency

Q-factor vs Power Efficiency

- Parasitic resistances
 - Metal resistance: **R**_s
 - Substrate resistance: R_e

$$P_{con} = I_{rms}^2 \times R$$

- Spiral-to-substrate capacitance: Cox
- Spiral-to-underpass overlap capacitance: C_f

$$P_{sw} = C \times V^2 \times f_{sw}$$

Top View of the Inductor

- Number of sides=16
- Number of turns=2.75
- Metal width=100 µm
- Inner diameter=800 µm

Cross-section View

Port2

- Basic structure, low quality factor
- We should take advantage of the eight copper layers available in the process!

Multi-layer Winding

M6-to-M4 Spacing

Patterned N-Well

Performance of the Inductor

	Process	Material	L	R _{series}	C _{parasitic}
JSSC07 [1]	0.35µm	0.02 Ω/square Aluminum	22nH	2.5 Ω	25 pF
ESSCIRC08[5]	0.13µm	2 μm Copper+ 1.2 μm Aluminum	9.8nH	1.6 Ω	_
CICC08[3]	0.18µm	Golden bond wire	18nH	1 Ω	_
This work	0.13 µm	3+0.385+0.385 μm Copper	10.5nH	1.2 Ω	3 pF

Improve Area Efficiency

	Sοι	irce	Su	bstr	ate	Dr	rain	Сар
Gate								MOS
M1								
M2								
M3								
M4								Cap
M5		-	-	•				Fringe
M6								Metal
M7								
M8								

- "■" denotes the top plate
- " \square " denotes the bottom plate

- MOS cap
- Metal fringe cap
 - Vertical
 - Lateral
- ≈3.6 nF/0.62 mm²
- 44% improvement

Circuit Architecture

Chip Micro-photograph

Measured Power Efficiency

The input voltage is 3.3 V for all measurements

Compare LDO With Buck

Especially, when the load current is zero, the Buck consumes more than 10mW, While the LDO consumes less than 1mW.

The efficiency of LDO is prior to Buck at light loads, vice versa.

Proposed Structure

LDO Consideration

Dominant pole Non-dominant pole

$$C_{out} = 7nF$$

Stability is difficult to design!

LDO Consideration

Analysis of LDO

Adaptive P₃ Adjust Circuit

48

Analysis of Loop1

Transfer Function of Loop1

Bode Plot of Loop1

Layout of the Chip

Process: SMIC 0.13 μ m 1.2/3.3 V 1P9M RF CMOS

Simulated Power Efficiency

Vin= 1.2 V, Vout=0.9V

To be really invisible

A System Solution in Portable Applications

Wireless Power

• Wireless signal \rightarrow Wireless power

Not a New Topic

Tesla's high frequency and potential lecture of 1891

But an Emerging Market

• Mobile phone market drives the growth

Source: iSuppli Corp. 2010

58

A System Solution in Portable Applications

Self-Power

- Generate energy
 - From solar
 - From heat
 - From vibration
 - From RF energy
 - From anything...
- E.g. nokia patent
 - Piezoelectric kinetic energy harvester

EE: Energy Engineering

- Energy generation
 - Solar energy
 - Piezoelectric energy
- Energy transmission
 - Non-isolated power stage
 - Wireless power
- Energy conversion
 - Linear vs. Switching
 - Inductor based vs. Charge pump

Advanced Power Management Techniques for Portable Applications

