Small Area Power Converter for Application to Distributed On-Chip Power Delivery

Eby G. Friedman
Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions
Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions
Power Delivery in Modern ICs

- Typical power delivery
 - Off-chip power supplies provide current
 - Low quality voltage regulation
 - Slower response time
 - IR and Ldi/dt voltage drops
 - Large number of dedicated I/O pads
 - Increases with the number of voltage domains
Power Delivery in Modern ICs

- **On-chip power delivery**
 - Multi-supply voltage processors
 - Need higher efficiency
 - Reduced parasitic impedances
 - Enhanced voltage regulation
 - Smaller parasitic voltage drops
 - Faster load regulation
 - Size of existing on-chip supplies is large
 - Small voltage regulators are required
Power Delivery in Modern ICs

- Typical power delivery
- On-chip power delivery
- Proposed power delivery

- Smaller on-chip power supplies
- Fast algorithms for power grid analysis
 - More efficient design and analysis of highly complex circuits
- Design methodology for simultaneously placing decoupling capacitors and distributed power supplies
 - Enhanced load regulation
 - Point-of-load voltage regulation
 - Increased power efficiency of overall system
Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions
Typical On-Chip Voltage Regulation

- Existing on-chip power supplies
 - Large on-chip area requirement
 - Difficult to implement multiple voltage domains
 - Several power supplies are required
 - Slow response time
 - Parasitic impedances degrade response time
 - High parasitic voltage drop
 - Power supplies are far from the load circuitry
 - Large parasitic impedance between power supply and load circuits
Point-of-Load Voltage Regulation

- Small local point-of-load power supplies solve these problems
 - Small on-chip area
 - Fast response time and low parasitic voltage drop
 - Small parasitic impedance between power supply and load circuitry
 - Voltage is generated close to the load circuitry
 - More robust voltage regulation
 - Small output DC voltage shift for different current demands
 - Maximum output current demand of each power supply is small
Feedback–Active Filter Based Converter

- Feedback is within active filter structure
 - Fast transient response to the load changes
 - Similar to LDO

- Effective regulation of the output voltage
 - Small changes in the supply voltage
 - Sharp output load transients
Choice of Filter Topology

- **Filter types**
 - Butterworth
 - **Chebyshev type I**
 - Bessel
 - Chebyshev type II
 - Elliptic
 - ...

- **Filter configurations**
 - Sallen-Key
 - No DC current path
 - From input to output
 - To the ground
 - Multiple feedback
 - DC current path between input and output
 - No DC current path to ground
 - Twin-t and bridged-t feedback
 - DC current path from input to output
 - DC current path to ground
 - ...

- **Chebyshev type I**
 - Faster transition than Butterworth and Bessel
 - No zeros needed in the transfer function

- **Sallen-Key configuration is used**
 - No DC current path
 - Minimize the static power dissipation
Test Chip – Test Set-Up and Die Photo

- 110 nm CMOS TSMC/Kodak technology
- Five different test circuits have been fabricated
 - Three circuits with internal PWM module to provide the input signal
 - Two circuits with input signals supplied from an off-chip signal generator

Experimental Results - Load Regulation

- Current slope = 1 amp/µs
 - No ringing
 - Stable operation
- Response time = 72 ns

Current efficiency = 99%
Example DC-DC Voltage Converters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Buck</td>
<td>LDO</td>
<td>LDO</td>
<td>LDO</td>
<td>SC</td>
<td>SC</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Year</td>
<td>2003</td>
<td>2005</td>
<td>2007</td>
<td>2008</td>
<td>2010</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Technology (nm)</td>
<td>80</td>
<td>90</td>
<td>350</td>
<td>350</td>
<td>45</td>
<td>32</td>
<td>110</td>
</tr>
<tr>
<td>Response time (ns)</td>
<td>87</td>
<td>-----</td>
<td>270</td>
<td>300</td>
<td>120-</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>On-chip area (mm²)</td>
<td>12.6</td>
<td>0.098</td>
<td>0.264</td>
<td>0.045 + off-chip capacitor</td>
<td>0.16</td>
<td>0.374</td>
<td>0.026</td>
</tr>
<tr>
<td>V_{out} (V)</td>
<td>0.9</td>
<td>0.9</td>
<td>1.8-3.15</td>
<td>1.0</td>
<td>0.8 – 1.0</td>
<td>0.66 – 1.33</td>
<td>0.9</td>
</tr>
<tr>
<td>ΔV_{out} (mV)</td>
<td>100</td>
<td>90</td>
<td>54</td>
<td>180</td>
<td>-----</td>
<td>-----</td>
<td>44</td>
</tr>
<tr>
<td>I_Q (quiescent current) (mA)</td>
<td>-----</td>
<td>6</td>
<td>0.02</td>
<td>0.095</td>
<td>-----</td>
<td>-----</td>
<td>0.38</td>
</tr>
<tr>
<td>I_{max} (mA)</td>
<td>9500</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>8</td>
<td>205</td>
<td>140</td>
</tr>
</tbody>
</table>

Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions
Interactions within On-Chip Power Grid

- Complicated interactions
 - Tens of power supplies
 - Hundreds of decoupling capacitors
 - Millions of load circuits
Simultaneous Co-Design Methodology for Effective Power Delivery

- A change in the design process of power distribution networks is necessary
 - Increased number of on-chip power supplies
 - Increased number of on-chip voltage islands
 - Stringent noise constraints with supply voltage scaling

- Efficient co-placement of power supplies and decoupling capacitors
 - Reduced power dissipation and power/ground noise
 - Reduce thermal problems
 - Decrease the total size of the required decoupling capacitors to maintain a target noise constraint
 - Multi-voltage design process will be easier

- Need fast and efficient algorithm for synthesis
Closed-Form Expressions of Effective Impedance

- Infinite uniform resistive grid
 - Identical resistance, R

- Models power or ground distribution network

- Effective resistance between arbitrary points is utilized in power grid analysis

Exact solution

\[
R_{(A,B)} = \int \frac{(2 - e^{\imath n \alpha} \cos(n \beta) - e^{\imath m \alpha} \cos(m \beta))}{\sinh(\alpha)} \, d\beta
\]

Asymptotic solution

\[
R_{(A,B)} = \frac{1}{2 \pi} \ln(n^2 + m^2) + 0.51469
\]

* Maximum error < 3% (for an adjacent node)

Point-of-Load Supply vs. Decoupling Capacitance

<table>
<thead>
<tr>
<th></th>
<th>On-chip power supply</th>
<th>On-chip decoupling capacitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>Greater area requirement</td>
<td>Smaller area requirement</td>
</tr>
<tr>
<td>Response time</td>
<td>Slower response</td>
<td>Faster response</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>Limited efficiency due to the active devices and parasitic impedances</td>
<td>Power loss only due to parasitic impedances</td>
</tr>
<tr>
<td>Maximum supplied current</td>
<td>High</td>
<td>Limited to the size of the capacitor. Decay and recharge rate of the capacitor should be considered</td>
</tr>
</tbody>
</table>

- Developed fast algorithm for power grid analysis
 - Reduces the time required to optimize the locations of multiple power supplies and decoupling capacitors
 - Considers physical distance among circuit components and power grid characteristics in the co-placement methodology
 - Incorporates the distinctive properties of the power supplies and decoupling capacitors

Simplified Model of Power Grid Interactions

- **Physical separation** affects the current supplied from the
 - Power supplies
 - Decoupling capacitors

\[I_l = i_{dl} + i_{pl} \]

\[i_{dl} = \frac{i_{pl}\left(R_{pl} + L_{pl}\frac{dV_c(t)}{dt}\right) - CR_{vd}\frac{dV_c(t)}{dt} - CL_{vd}\frac{d^2V_c(t)}{dt^2}}{R_{vd} + R_{dl} + (L_{vd} + R_{dl})\frac{dV_c(t)}{dt}} \]
Effective Region of Influence of Power Sources

- Effective region exhibits elliptic shape
 - Long radius is determined by the effective impedance among components

\[r_l = \frac{K \times C}{R_{(x_1, y_1)} + k \times L_{(x_1, y_1)}} \]
Elliptic Shape of Effective Region

- Power supply
 - Connected at $N_{(10,10)}$
- Four decoupling capacitors
 - Connected at $N_{(6,14)}$, $N_{(17,17)}$, $N_{(5,5)}$, and $N_{(18,2)}$
- Load current
 - Uniformly distributed
 - $t_r \rightarrow 100$ ps
 - $t_f \rightarrow 300$ ps

- SPICE simulation
 - $r_{i_2}/r_{i_4} = 1.2$
- Analytic model
 - $r_{i_2}/r_{i_4} = 1.15$
 - Error < 5 %
Effect of Load Characteristics on Effective Region

- **Four power supplies**
 - Connected at $N(3,10)$, $N(10,3)$, $N(10,17)$, and $N(16,10)$

- **Five decoupling capacitors**
 - Connected at $N(3,3)$, $N(3,17)$, $N(10,10)$, $N(17,3)$, and $N(17,17)$

- **Effective regions strongly depend on**
 - Transition times of load devices

- **Decoupling capacitors are more effective**
 - When transition time of load current is faster

- **On-chip power supplies are more effective**
 - When transition times are slower
Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions
Specialized circuits for integrated power supply within 3-D structures
Distributed 3-D Rectifier

- Exploits the rectifier portion of a buck converter
 - Generates and distributes power supplies in 3-D integrated circuits
 - Eliminates the need for on-chip inductors
- Rectifier is composed of transmission lines
 - Terminated with lumped capacitances
- Inter-plane structure is connected by 3-D vias
- Low pass behavior
 - RC-like characteristics
Transfer Function Comparison

- Both filters exhibit similar characteristics in the MHz frequency range
 - **LC filter**
 - Inductor ESR
 - Output resistance of power MOSFETs
 - **Distributed filter**
 - Interconnect resistance
 - Output resistance of power MOSFETs
 - Multiple poles due to distributed nature of the filter
 - Simultaneous current distribution and signal filtering
Rectifier Design

- 5% voltage ripple
- Equal interconnect lengths on each plane
- Equal capacitors on each plane
- Length = 1 mm
 - 100 lines in parallel
- C = 4.2 nF/plane
 - 10 fF/μm²
- Area
 - 0.42 mm²/plane

\[
V_{pp} = 4.4\% \text{ of } V_{dd2}
\]
Schematic of Distributed 3-D Rectifier
3-D Power Delivery Test Circuit

Power distribution networks
Distributed rectifier

On-chip capacitors

Plane C (upper)
Plane B (middle)
Plane A (bottom)

Interconnects
Switched current loads
Interconnects

Ring oscillators and buffers
Power supply noise measurement circuit
Density of On-Chip Capacitance

- Capacitive density
 - 10 fF/μm² in the MITLL 150 nm 3-D technology
 - Increases with technology

Circuit area is reduced to 0.08 mm²
Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions
Conclusions

- An ultra-area efficient on-chip voltage regulator appropriate for point-of-load implementation
 - 0.026 mm² on-chip area
 - > 99% current efficiency
 - Fast response time, 72 ns
 - Low DC voltage shift, 44 mV (< 5%)
 - At maximum current demand
- Simultaneous co-placement of point-of-load local power supplies and decoupling capacitors
 - Exploits similarities and differences between power supplies and decoupling capacitors
 - Determines the effectiveness regions considering
 - Physical distances among components
 - Power/ground parasitic impedances
 - Work in progress
- Distributed power supply for 3-D ICs
 - Exploits the distributed passive filter and TSVs within a 3-D system
 - Currently in test