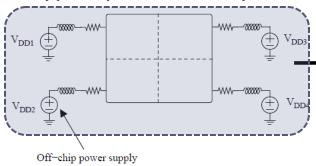
Small Area Power Converter for Application to Distributed On-Chip Power Delivery

Eby G. Friedman

DC-DC convertors on silicon

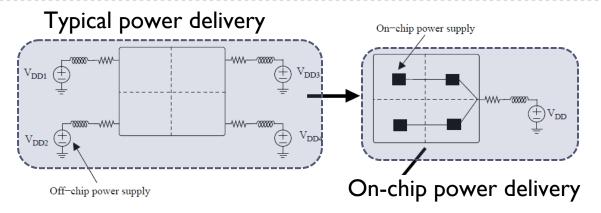
next generation technology for emerging business opportunities

Agenda

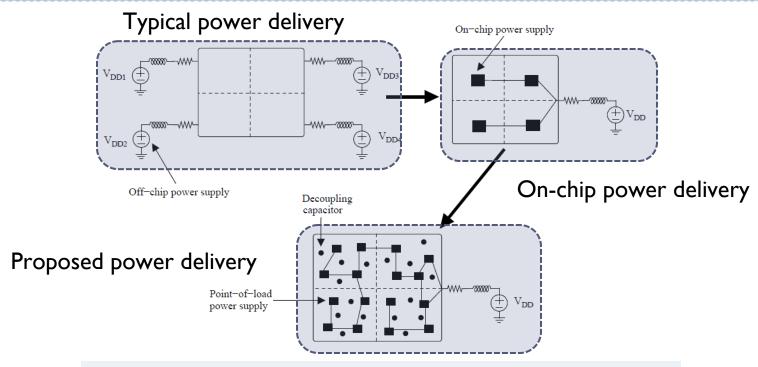

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions

Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions


Power Delivery in Modern ICs

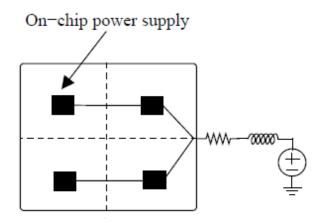
Typical power delivery


- Typical power delivery
 - Off-chip power supplies provide current
 - Low quality voltage regulation
 - □ Slower response time
 - \square IR and Ldi/dt voltage drops
 - Large number of dedicated I/O pads
 - Increases with the number of voltage domains

Power Delivery in Modern ICs

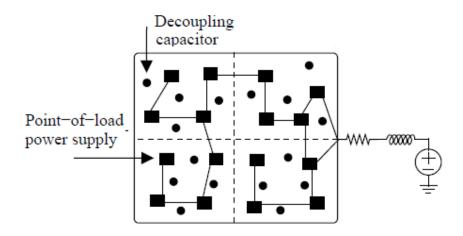
- On-chip power delivery
 - Multi-supply voltage processors
 - Need higher efficiency
 - Reduced parasitic impedances
 - Enhanced voltage regulation
 - Smaller parasitic voltage drops
 - Faster load regulation
 - Size of existing on-chip supplies is large
 - Small voltage regulators are required

Power Delivery in Modern ICs


Proposed power delivery

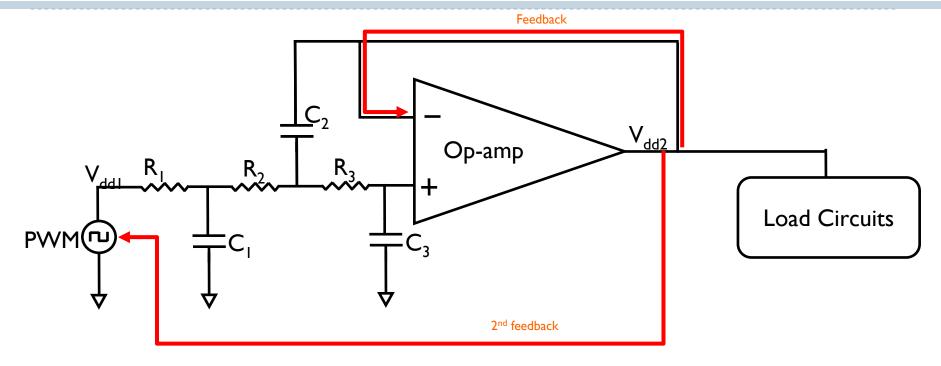
- Smaller on-chip power supplies
- Fast algorithms for power grid analysis
 - More efficient design and analysis of highly complex circuits
- Design methodology for simultaneously placing decoupling capacitors and distributed power supplies
 - Enhanced load regulation
 - Point-of-load voltage regulation
 - Increased power efficiency of overall system

Agenda

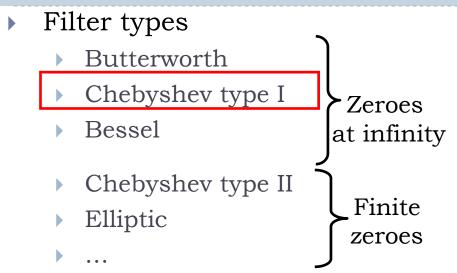

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions

Typical On-Chip Voltage Regulation

- Existing on-chip power supplies
 - Large on-chip area requirement
 - Difficult to implement multiple voltage domains
 - □ Several power supplies are required
 - Slow response time
 - Parasitic impedances degrade response time
 - High parasitic voltage drop
 - Power supplies are far from the load circuitry
 - Large parasitic impedance between power supply and load circuits


Point-of-Load Voltage Regulation

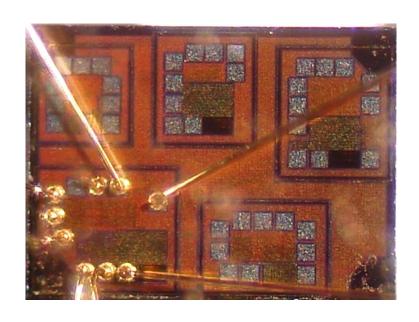
- Small local point-of-load power supplies solve these problems
 - Small on-chip area
 - Fast response time and low parasitic voltage drop
 - > Small parasitic impedance between power supply and load circuitry
 - □ Voltage is generated close to the load circuitry
 - More robust voltage regulation
 - Small output DC voltage shift for different current demands
 - □ Maximum output current demand of each power supply is small

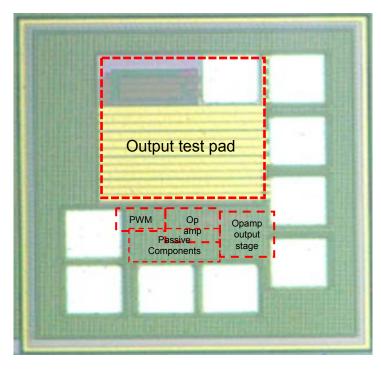


Feedback-Active Filter Based Converter

- Feedback is within active filter structure
 - Fast transient response to the load changes
 - Similar to LDO
- Effective regulation of the output voltage
 - Small changes in the supply voltage
 - Sharp output load transients

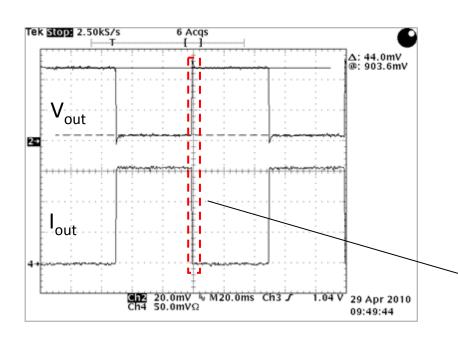
Choice of Filter Topology



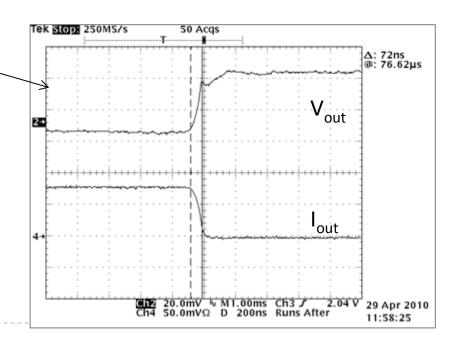

Filter configurations

- Sallen-Key
 - No DC current path
 - □ From input to output
 - To the ground
- Multiple feedback
- DC current path between input and output
- No DC current path to ground
- Twin-t and bridged-t feedback
 - DC current path from input to output
 - DC current path to ground
- ...

- Chebyshev type I
 - Faster transition than Butterworth and Bessel
 - No zeros needed in the transfer function
- Sallen-Key configuration is used
 - No DC current path
 - Minimize the static power dissipation


Test Chip – Test Set-Up and Die Photo

- 110 nm CMOS TSMC/Kodak technology
- Five different test circuits have been fabricated
 - Three circuits with internal PWM module to provide the input signal
 - Two circuits with input signals supplied from an off-chip signal generator


Experimental Results - Load Regulation

Current efficiency = 99%

- No ringing
 - Stable operation
- Response time = 72 ns

Example DC-DC Voltage Converters

	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Туре	Buck	LDO	LDO	LDO	SC	SC	Hybrid
Year	2003	2005	2007	2008	2010	2010	2010
Technology (nm)	80	90	350	350	45	32	110
Response time (ns)	87		270	300	120- 1200		72
On-chip area (mm²)	12.6	0.098	0.264	0.045 + off- chip capacitor	0.16	0.374	0.026
V _{out} (V)	0.9	0.9	1.8-3.15	1.0	0.8 – 1.0	0.66 - 1.33	0.9
Δ V _{out} (mV)	100	90	54	180			44
I _Q (quiescent current) (mA)		6	0.02	0.095			0.38
I _{max} (mA)	9500	100	200	50	8	205	140

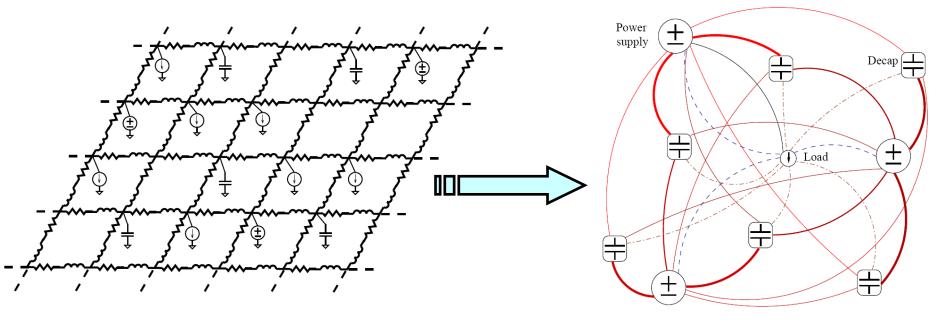
^[1] V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman, "Analysis of Buck Converters for On-Chip Integration with a Dual Supply Voltage Microprocessor," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, Vol. 11, No. 3, pp. 514–522, June 2003.

^[2] P. Hazucha et al., "Area-Efficient Linear Regulator with Ultra-Fast Load Regulation," IEEE Journal of Solid-State Circuits, Vol. 40, No. 4, pp. 933-940, April 2005.

^[3] M. Al-Shyoukh, H. Lee, and R. Perez, "A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator with Buffer Impedance Attenuation," *IEEE Journal of Solid-State Circuits*, Vol. 42, No. 8, pp. 1732–1742, August 2007.

^[4] T. Y. Man, K. N. Leung, C. Y. Leung, P. K. T. Mok, and M. Chan, "Development of single-transistor-control LDO based on flipped voltage follower for SoC," *IEEE Trans. Circuits Syst. I, Reg. Papers*, Vol. 55, No. 5, pp. 1392–1401, June 2008.

^[5] Y. Ramadass, A. Fayed, B. Haroun, A. Chandrakasan, "A 0.16mm² Completely On-Chip Switched-Capacitor DC-DC Converter Using Digital Capacitance Modulation for LDO Replacement in 45nm CMOS," *IEEE International Solid-State Circuits Conference*, February 2010.

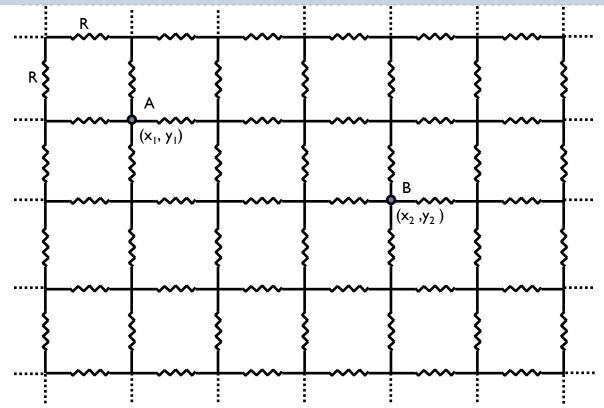

^[6] H.-P Le, M. Seeman, S. R. Sanders, V. Sathe, S. Naffziger, E. Alon, "A 32nm Fully Integrated Reconfigurable Switched-Capacitor DC-DC Converter Delivering 0.55W/mm² at 81% Efficiency," *IEEE International Solid-State Circuits Conference*, February 2010. 2010

^[7] S. Kose and E. G. Friedman, "An Area Efficient Fully Monolithic Hybrid Voltage Regulator,"

Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions

Interactions within On-Chip Power Grid



- Complicated interactions
 - Tens of power supplies
 - Hundreds of decoupling capacitors
 - Millions of load circuits

Simultaneous Co-Design Methodology for Effective Power Delivery

- A change in the design process of power distribution networks is necessary
 - Increased number of on-chip power supplies
 - Increased number of on-chip voltage islands
 - Stringent noise constraints with supply voltage scaling
- Efficient co-placement of power supplies and decoupling capacitors
 - Reduced power dissipation and power/ground noise
 - Reduce thermal problems
 - Decrease the total size of the required decoupling capacitors to maintain a target noise constraint
 - Multi-voltage design process will be easier
- Need fast and efficient algorithm for synthesis

Closed-Form Expressions of Effective Impedance

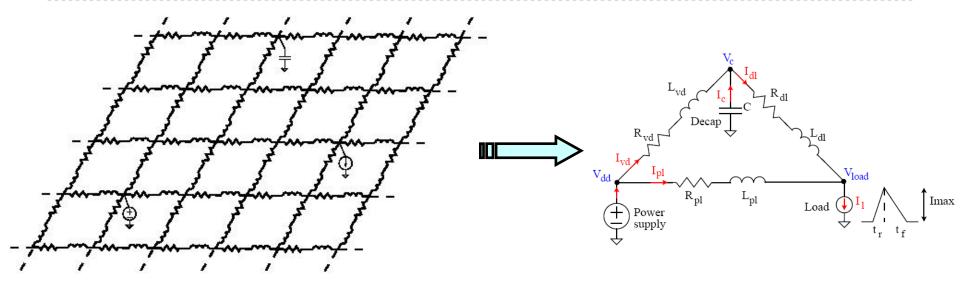
- Identical resistance, R
- Models power or ground distribution network
- Effective resistance between arbitrary points is utilized in power grid analysis

$$R_{(A,B)} = \int \frac{(2 - e^{-|m|\alpha} \cos(n\beta) - e^{-|n|\alpha} \cos(m\beta))}{\sinh(\alpha)} d\beta$$

where $m = |x_1 - x_2|$ and $n = |x_2 - y_2|$

Asymptotic solution* $\Rightarrow R_{(A,B)} = \frac{1}{2\pi} \ln(n^2 + m^2) + 0.51469$

- Maximum error < 3% (for an adjacent node)

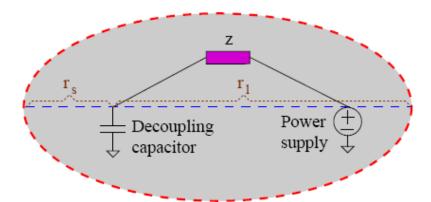

Point-of-Load Supply vs. Decoupling Capacitance

	On-chip power supply	On-chip decoupling capacitor		
Area	Greater area requirement	Smaller area requirement		
Response time	Slower response	Faster response		
Power efficiency	Limited efficiency due to the active devices and parasitic impedances	Power loss only due to parasitic impedances		
Maximum supplied current	High	Limited to the size of the capacitor. Decay and recharge rate of the capacitor should be considered		

Developed fast algorithm for power grid analysis

- Reduces the time required to optimize the locations of multiple power supplies and decoupling capacitors
- Considers physical distance among circuit components and power grid characteristics in the co-placement methodology
- Incorporates the distinctive properties of the power supplies and decoupling capacitors

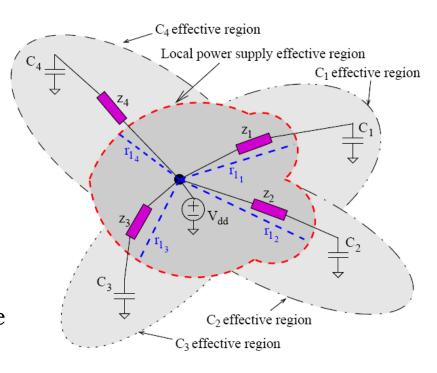
Simplified Model of Power Grid Interactions



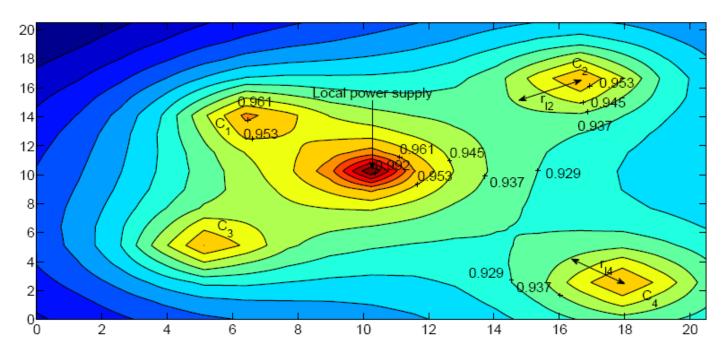
$$I_l = i_{dl} + i_{pl}$$

- Physical separation affects the current supplied from the
 - Power supplies
 - Decoupling capacitors

$$i_{dl} = \frac{i_{pl} \left(R_{pl} + L_{pl} \frac{dV_c(t)}{dt}\right) - CR_{vd} \frac{dV_c(t)}{dt} - CL_{vd} \frac{d^2V_c(t)}{dt^2}}{R_{vd} + R_{dl} + \left(L_{vd} + R_{dl}\right) \frac{dV_c(t)}{dt}}$$

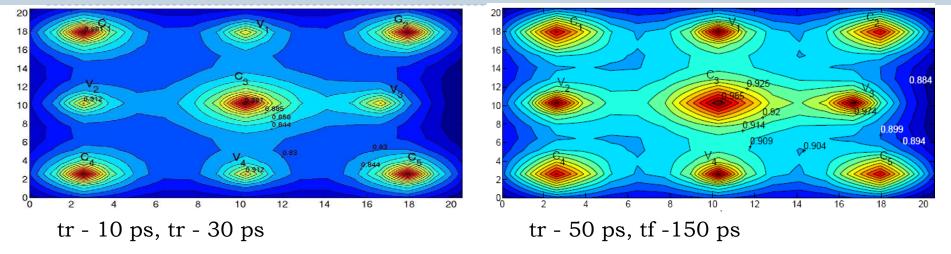

Effective Region of Influence of Power Sources

Effective region of one power supply and one decoupling capacitor


- > Effective region exhibits elliptic shape
 - Long radius is determined by the effective impedance among components

$$r_{l} = \frac{K * C}{R_{(x_{1}, y_{1})} + k * L_{(x_{1}, y_{1})}}$$

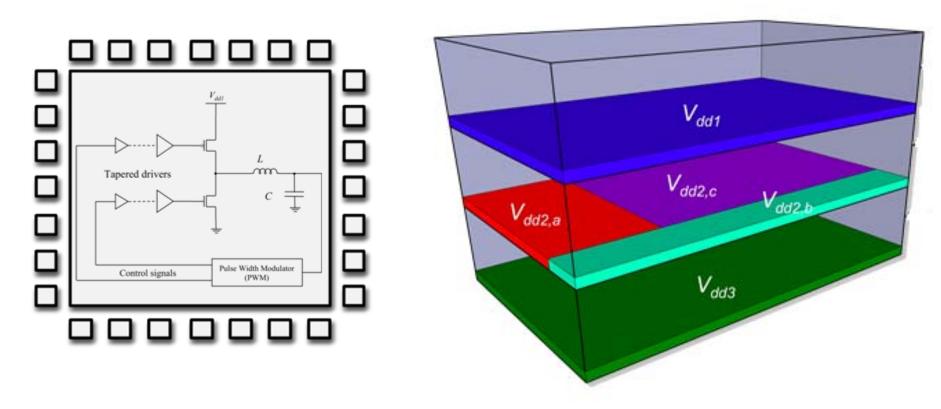
Effective regions of one power supply and multiple decoupling capacitors


Elliptic Shape of Effective Region

- Power supply
 - Connected at $N_{(10,10)}$
- Four decoupling capacitors
 - Connected at $N_{(6,14)}$, $N_{(17,17)}$, $N_{(5,5)}$, and $N_{(18,2)}$
- Load current
 - Uniformly distributed
 - tr → 100 ps
 - tf → 300 ps

- SPICE simulation
 - $-r_{l2}/r_{l4}=1.2$
- Analytic model
 - $-r_{l2}/r_{l4}=1.15$
 - Error < 5 %

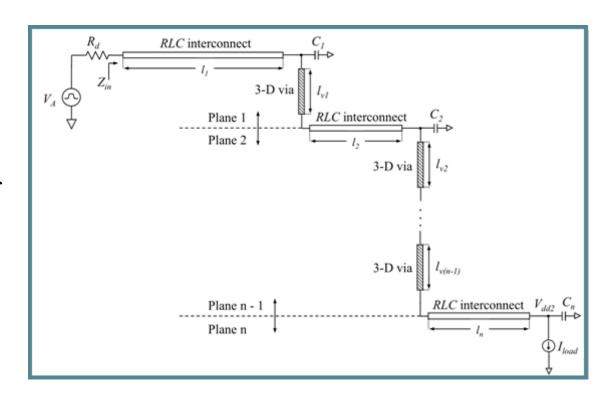
Effect of Load Characteristics on Effective Region



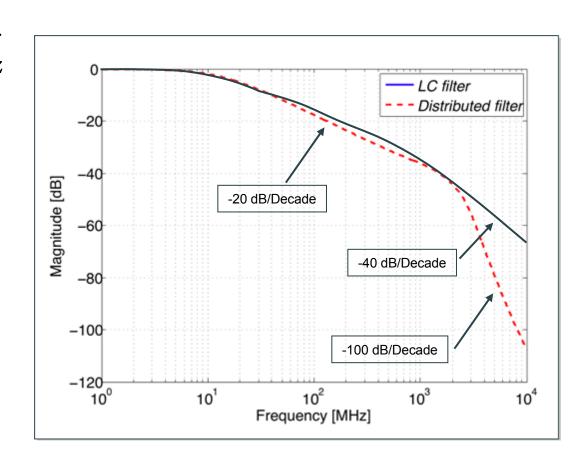
- Four power supplies
 - Connected at $N_{(3,10)}$, $N_{(10,3)}$, $N_{(10,17)}$, and $N_{(16,10)}$
- Five decoupling capacitors
 - Connected at $N_{(3,3)}$, $N_{(3,17)}$, $N_{(10,10)}$, $N_{(17,3)}$, and $N_{(17,17)}$
- Effective regions strongly depend on
 - Transition times of load devices
- Decoupling capacitors are more effective
 - When transition time of load current is faster
- On-chip power supplies are more effective
 - ---When transition times are slower

Agenda

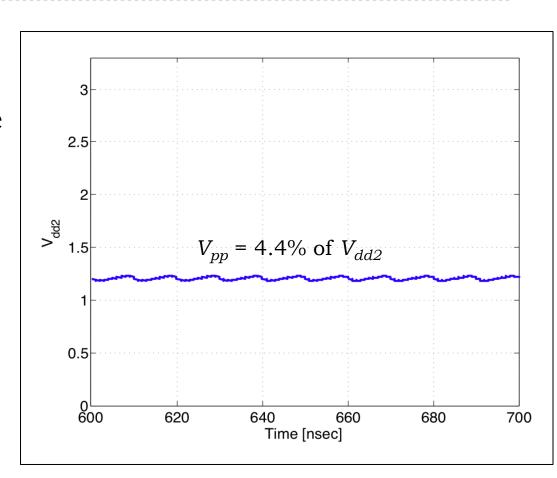
- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions


On-Chip Power Delivery in 3-D Circuits

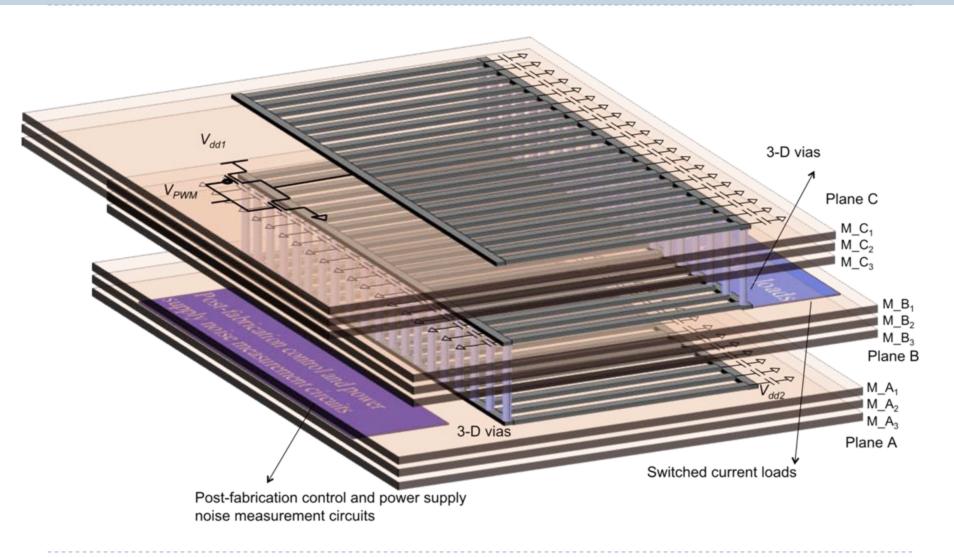
Specialized circuits for integrated power supply within
3-D structures


Distributed 3-D Rectifier

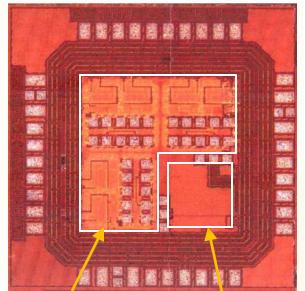
- Exploits the rectifier portion of a buck converter
 - Generates and distributes power supplies in 3-D integrated circuits
 - Eliminates the need for on-chip inductors
- Rectifier is composed of transmission lines
 - Terminated with lumped capacitances
- Inter-plane structure is connected by 3-D vias
- Low pass behavior
 - ▶ *RC*-like characteristics


Transfer Function Comparison

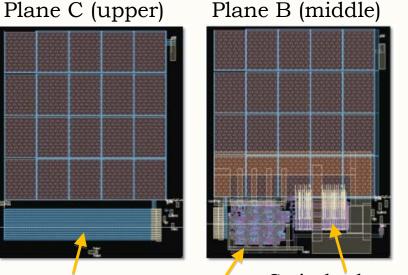
- ► Both filters exhibit similar characteristics in the MHz frequency range
 - ► *LC* filter
 - ► Inductor ESR
 - ► Output resistance of power MOSFETs
 - ▶ Distributed filter
 - ▶ Interconnect resistance
 - ► Output resistance of power MOSFETs
 - ► Multiple poles due to distributed nature of the filter
 - ► Simultaneous current distribution and signal filtering

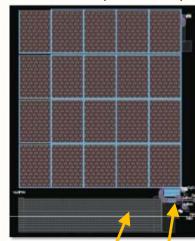


Rectifier Design


- ▶ 5% voltage ripple
- Equal interconnect lengths on each plane
- Equal capacitors on each plane
- ▶ Length = 1 mm
 - ▶ 100 lines in parallel
- ightharpoonup C = 4.2 nF/plane
 - ▶ 10 fF/µm²
- Area
 - \rightarrow 0.42 mm²/plane

Schematic of Distributed 3-D Rectifier


3-D Power Delivery Test Circuit

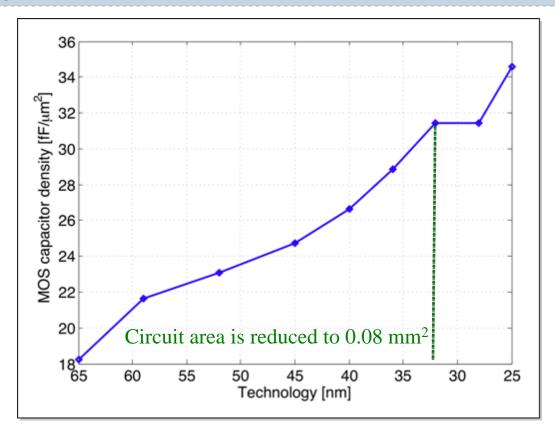

Power distribution networks

Distributed rectifier

On-chip capacitors

Plane A (bottom)

Interconnects


Ring oscillators and buffers

Switched current loads

Interconnects

Power supply noise measurement circuit

Density of On-Chip Capacitance

Capacitive density

- ▶ 10 fF/µm² in the MITLL 150 nm 3-D technology
- Increases with technology

Agenda

- Motivation
- Point-of-load voltage regulator
- Distributed on-chip power delivery
- Distributed 3-D rectifier
- Conclusions

Conclusions

- An ultra-area efficient on-chip voltage regulator appropriate for point-of-load implementation
 - ▶ 0.026 mm² on-chip area
 - > 99% current efficiency
 - Fast response time, 72 ns
 - ▶ Low DC voltage shift, 44 mV (< 5%)
 - At maximum current demand
- Simultaneous co-placement of point-of-load local power supplies and decoupling capacitors
 - Exploits similarities and differences between power supplies and decoupling capacitors
 - Determines the effectiveness regions considering
 - Physical distances among components
 - Power/ground parasitic impedances
 - Work in progress
- Distributed power supply for 3-D ICs
 - Exploits the distributed passive filter and TSVs within a 3-D system
 - Currently in test