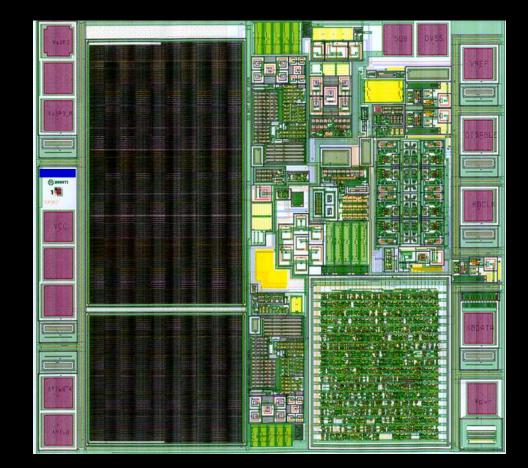
Mixed Signal Technologies Enabling PSOC and PSIP


Sameer Pendharkar Analog Technology Development Texas Instruments Inc. Dallas, TX, USA

Analog Tech. Development

Typical Power Management IC

- Digital content
 - Controllers, Logic
- Analog content
 - Feedback, ADC, DAC, Fault detection/prevention, Sensing
- High voltage
 - Gate driver, charge pump, regulators
- Power
 - Linear regs, SMPS (boost, buck, flyback)
- Passives
 - Capacitors, Resistors

U Texas Instruments

Analog Tech. Development

(Power)SOC & SIP

- Benefits
 - Utilization of the best controlled manufacturing process
 - Smallest size solution for complete application
 - Reduced manufacturing cost
 - Increased functionality, fault management and sensing
- Challenges
 - Process technology compatibility → integration of digital+analog+high voltage+power+passives
 - In-package thermal management
 - Circuit isolation and noise management
 - Metal interconnect and oxide voltage and reliability

Mixed Signal Technology Integration

- Digitization of Analog Functions
 - enabled by cheap gates
 - reduces power consumption
 - drives to defect limited yield
 - complex closed loop algorithm implementation
- Analog Characterization of "Digital Processes"
 - <u>key</u> to enable "system-on-a-chip" (even SIP)
 - analog "process control" for roadmap digital technology
 - digital transistor "adjustments" to meet analog circuit demands

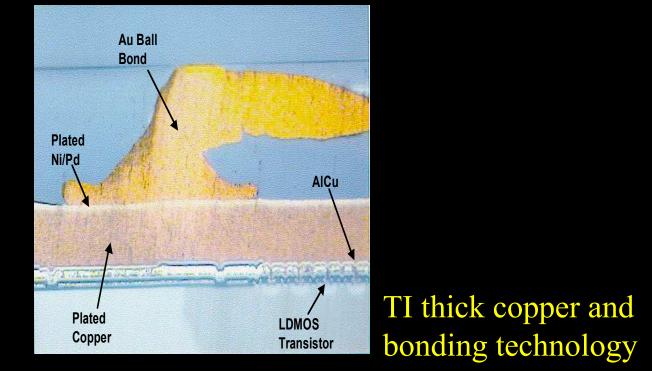
Analog Tech. Development

Mixed Signal Technology Integration

Total Mixed Signal Integration

- integrate whatever that cannot be integrated on a DSP/MCU chip
- cost focused maximize analog and HV integration
 - process complexity to support specialized components
- low/no incremental process cost and complexity exclusively for digital density
- balanced process/component design & circuit design problem

Mixed Signal Technology Drivers

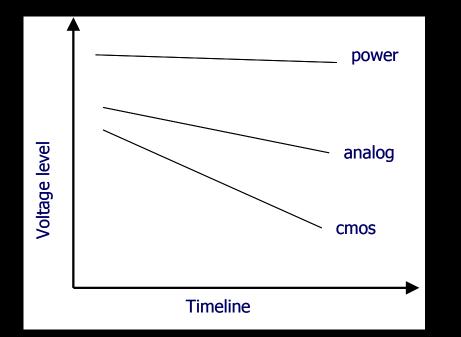

- Analog CMOS
 - low noise and improved matching (Leff <0.15um)
 - low Vt and low leakage
 - well characterized base analog CMOS building blocks
- Integrated HV and power devices
 - single/dual gate technology (Vt management)
 - variable voltage capability
 - variable voltage high current carrying power device design

Mixed Signal Technology Drivers

- Integrated passives
 - well matched capacitors and resistors (magnetics?)
 - no area constraints, design flexibility
- Dielectric/junction isolation
 - separate analog and digital blocks for noise control
 - band gap, reference and sensing management
- Other components
 - higher voltage "analog friendly" cmos
 - HV and high performance bipolar devices, efficient diodes

Mixed Signal Technology Drivers

- High current capable power bussing/interconnect
 - bussing interconnect technology to reduce power device area (thick metal driver)
 - bond over active area


Analog Tech. Development

Technology for Innovators[™]

Texas Instruments

Voltage Roadmap vs. Technology Platform

- CMOS & Logic roadmap
 - aggressive size reduction
 - aggressive voltage reduction (Efield scaling)
- Analog roadmap
 - slow size reduction
 - moderate voltage reduction
 - precision improvement and better passives

• Power roadmap

- slow size reduction
- voltage stability or increase
- optimized power performance

<u>Challenge</u>: To develop a single <u>cost-effective</u> integrated technology

Analog Tech. Development

Technology for Innovators[™]

🦆 Texas Instruments

Process Direction

<u>CMOS & Logic</u>

- thin & low-k dielectrics
- thinner & narrower metallization
- multiple CMP metal levels
- expensive deep submicron lithography
- speed & power & density
- shallow trench isolation (STI)
- zero/minimal thermal budget
- complex chain implants and sub-micron profiles
- Ion/Ioff ratio driven
- highly integrated

- <u>Analog & Power</u>
 - epitaxy (Si, SiGe)
 - thick copper metallization for current
 - CMP metal
 - SOI, buried layers, deep trench isolation, STI
 - standard lithography
 - power density & functionality
 - precision passives
 - deeper junctions
 - single/dual gate oxide
 - non-volatile solutions
 - modular integration

Analog Tech. Development

Technology for Innovators[™]

🥠 Texas Instruments

CMOS Roadmap and Power ICs

• <u>Pros</u>

- salicide technology
- trench etch & fill
- CMP and W-plugs
- MeV (high energy) implants
- "resurf-like" wells
- thick oxide field plates
- improved alignment tolerance
- better matching & parametric control

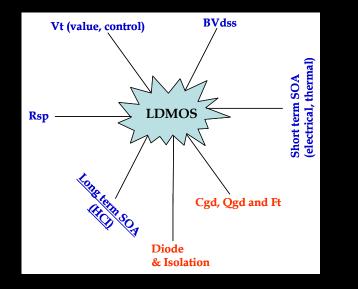
<u>Cons</u>

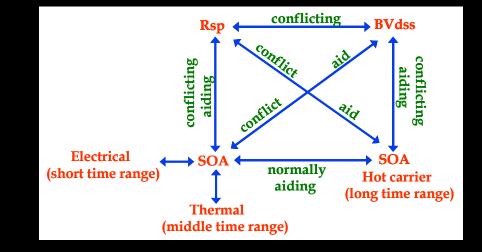
- thinner & low-k
 dielectrics
- thinner metal system
- very high doped wells
- significantly reduced thermal cycle
- thinner gate oxides
- higher energy implants
- increased process cost

Key Component Requirements

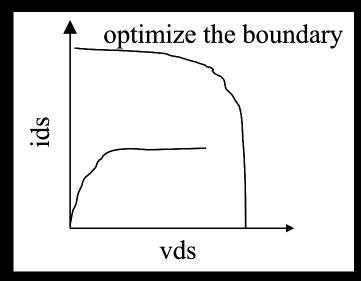
- Analog CMOS
 - compatible with high performance logic, modular features and low cost
 - "very good" analog DC characteristics
 - Vt. Gds. Gm. Delta-Vt, Ioff, Vdd
 - additional features
 - high voltage
 - low Vt, low leakage
 - excellent matching and 1/f noise and low dynamic Vt shift
 - isolate substrate and switching interference noises

Analog Tech. Development

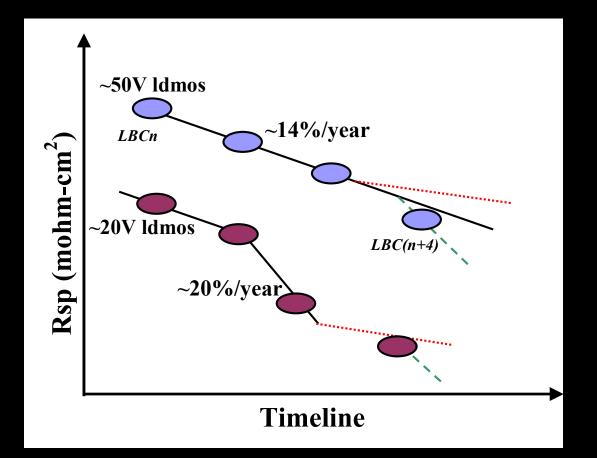

Key Component Requirements


- High voltage & power
 - voltage scalability & isolation
 - modular and minimal process cost
 - current scalability
 - compatibility with high performance logic

→ <u>Drives</u>


- MOS based solution
 - ease of integration & high i/p impedance
 - mostly uniform current flow & faster switching
- Lateral solution
 - easier to integrate
 - easier voltage scalability
 - normally lower Rdson X Qgate compared to vertical (lower Rdson)

Optimizing Power Devices

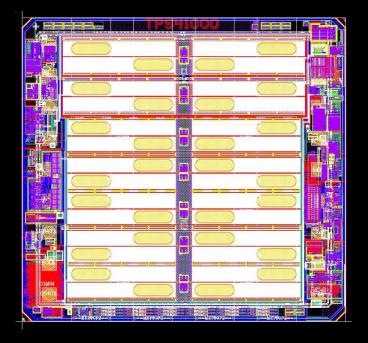

- Key HV device parameters
 - breakdown voltage (∞)
 - on-state resistance (0)
 - device robustness (intrinsic ∞)
 - switching speed (intrinsic ∞)
 - reliability (>> 10 years)

TEXAS INSTRUMENTS

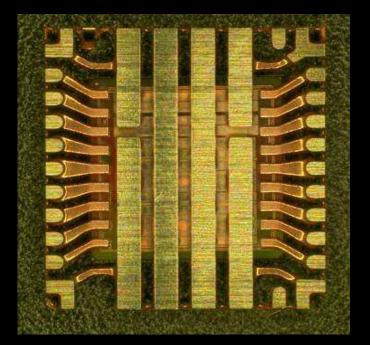
Analog Tech. Development

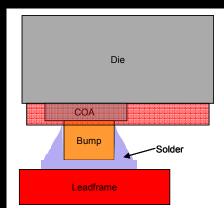
Integrated FET Scaling – Drives Technology

Integrated FET improvement at TI


 about 25-30% node-on-node improvement

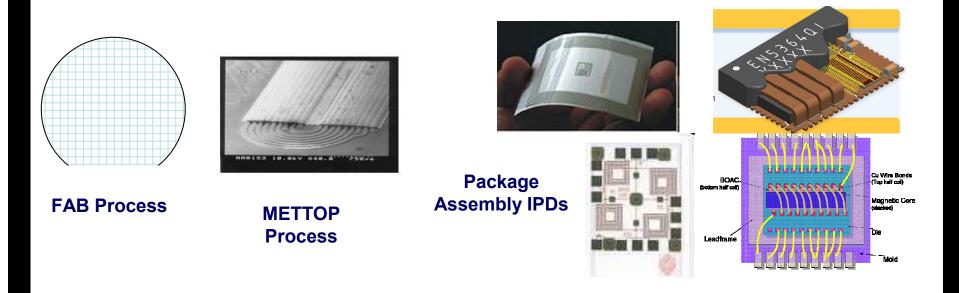
Analog Tech. Development


Technology for Innovators[™]


TEXAS INSTRUMENTS

Packaging Innovation –SOC/SIP power density

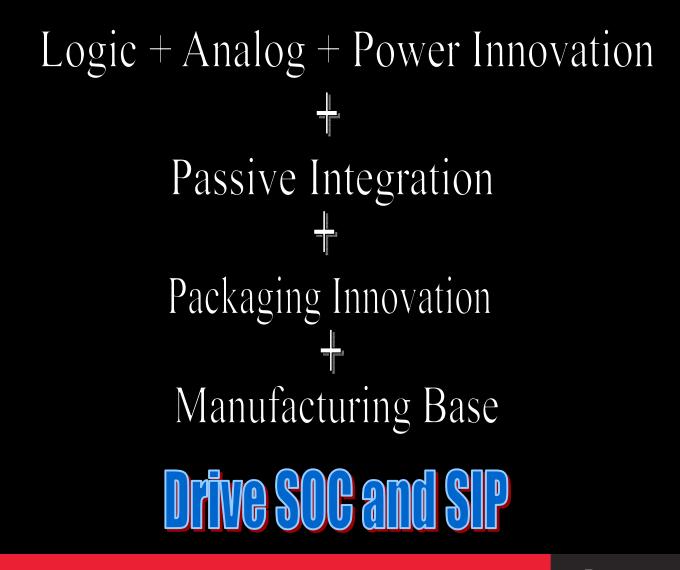
- Up to 20A monolithic dc-dc converter
 - enhanced thermal performance
 - no wires, low parasitics and high reliability



U Texas Instruments

Analog Tech. Development

Passive integration


- Drives improved isolated and non-isolated power supplies (transformers and inductors)
- Drives high density capacitors decoupling, precision
 - Enables full power supply in package

Analog Tech. Development

Technology for Innovators[™]

🥠 Texas Instruments

Summary

Analog Tech. Development

