NexFET A New Power Device

Shuming Xu
Texas Instruments Incorporated, Power Stage BU, MS 4008, Bethlehem, PA 18015

Presenter: Sameer Pendharkar
Technology Development, TI Dallas
Introduction
Device Structure

[Diagram of NexFET™ device structure with labels for Gate, N+, P, Cgd, p++, Rb, and N+ substrate]
Operation Principal
Measured Gate Charge Curve of NexFET

\[V_G \] - Gate Voltage - V

\[I_B = 25A \]
\[V_{DS} = 12.5V \]

\[Q_g \] - Gate Charge - nC

G003
Figure of Merit of NexFET vs. Trench DMOS
Power Loss vs. Frequency for Trench DMOS and NexFET

FET Power Loss @ $V_{IN} = 12V$, $V_{OUT} = 1.3V$, $L_{O RIPPLE} = 50\%$, $T_J = 100^\circ C$, 25A

3.6W P_{LOSS} Limit for 90% Efficiency

Trench FET

25V-NexFET
Measured UIS Capabilities at low and high Inductance

With low inductance, high avalanche current density of 20A/mm² is proven to be reliable even at 125°C. With large inductance, over 1 J avalanche energy is sustained for a device of 4mm² active area at both room temperature and 125°C.
Waveforms of 12V Rated Device in 12V Input Voltage Application

Before 1000-hrs Test

After 1000-hrs Test

NO CHANGE!
1) The test is performed under DC condition. The gate voltage is 4.5V.

2) The on-resistance increased from 1.352mOhm to 1.383mOhm after the 1000-hrs continuous running test, which is 2.3% increase.

3) The on-resistance shows a rising trend when the continuous running time is increased but increase insignificant.

![Graph showing Voltage/Current curve and On Resistance vs. Time data.](image)
NexFET Technology Enables Both Drain Down and Source Down Silicon Implementation

- Same architecture allows similar optimization paths for different applications
 - Drain down supports industry standard footprint products for drop in
 - Source down enables stack-die technology for higher efficiency and smaller footprint
 - Continuous technology improvements offer both source down and drain down customers to access better performance/price with the same footprints
Stack-Die Reduces Package Parasitics

A significant step in reducing package parasitics.
Efficiency for Stacked Die Solution

Stack die solution delivers better performance compared to a discrete solution
Summary

• Gen1 NexFET with lower FOM has been introduced with drain down structure – common configuration to existing vertical discrete transistors

• Gen2 NexFET was introduced with source down architecture, enabling stack die configuration, which improves the efficiency, and reduces size and package cost by ~50%