The importance of fully-integrated CMOS: Cost-Effective Integrated DC-DC Converters

Hans Meyvaert
Tom Van Breussegem
Hagen Marien
Dr. Mike Wens
Prof. Dr. Michiel Steyaert
Overview

• **Introduction**
 • DC-DC converters in CMOS
 – Passives
 – Active devices
 – Control

• **Inductive**
 – Converter Topologies
 – Converter Components
 – Control Systems

• **Capacitive**
 – Low Power
 – High Power
 – Exotic Cheap Technologies -> Organic DC-DC Converter
Introduction: Why & What?

- Bridge the Voltage Gap
 - Battery Voltage vs Supply Voltage
 - POL Converter close to load

- Enables
 - Multiple Voltage Domains
 - Voltage Scaling (AVS &DVS)

Need for DC-DC converters as basic building blocks
How DC-DC: SoC vs SiP

- **PowerSiP**
 - Bondwire interconnect to passives
 - # components vs footprint
 - Larger passives
 - Cost does not scale fully with production volume due to PCB and component cost
How DC-DC: SoC vs SiP

• PowerSoC
 – Very low supply impedance
 – Full decentralized power conversion (powergrid on chip)
 – Many voltage domains
 – Scalable
 – Small footprint
 – Cost scales with production volume
A Trend: (r)evolution

• Integration Paradigm
 – In RF-CMOS it brought us portable, low cost and versatile applications

 \[\rightarrow \text{A true technology revolution}\]

• Monolithic Integration of power electronics?
 – Even more compact utilities
 – Less energy losses
 – Longer Battery Lifetime (EEF)

\[\rightarrow \text{POWER-CMOS will complete the evolution that started with RF-CMOS}\]
Overview

• Introduction

• DC-DC converters in CMOS
 – Passives
 – Active devices
 – Control

• Inductive
 – Converter Topologies
 – Converter Components
 – Control Systems

• Capacitive
 – Low Power
 – High Power
 – Exotic Cheap Technologies -> Organic DC-DC Converter
DC-DC in CMOS: Passives

• Inductors
 – Integration awareness of inductors
 – Bond wire inductor
 – Metal track inductor
Passives in CMOS

Inductors on-chip:

- Skin-effect
- Substrate losses

Round conductors & far from substrate/metal
Passives in CMOS

Bondwire inductors:
- Can be combined with C underneath (slots!)
- Low series resistance: ca. 50mΩ/nH @ 100MHz
- Far from substrate
- Good for single-phase & high voltage
- Cannot be scaled well: no multiphase
Passives in CMOS

Metal-track inductors:
- Cannot be combined with C underneath
- High series resistance: ca. 250mΩ/nH @ 1GHz
- Close to substrate
- Good for multiphase & low voltage

Mike Wens
Published ESSCIRC 2008 – Edinburgh
DC-DC in CMOS: Passives

• Capacitors
Passives in CMOS

• Capacitors
 – MIM Capacitors
 • Low Density
 • High Quality
 • Voltage Independent Cap

 – MOS Capacitors
 • High Density
 • Improving with Scaling
 • Voltage Dependent Capacitance
 – Non Linear

 – MOM Capacitors
 • Low Density
 • High Quality
 • High voltage
Passives in CMOS

- Capacitance Density
 - Type dependant
 - MOS-cap: ~10nF/mm²
 - MIM-Cap: ~2nF/mm²
 - MOM-Cap: ~0.5nF/mm²
 - Layout dependant
 - MIM-cap:
 - Poor Modeled
 - Little Layout freedom
 - MOS-cap
 - Poor Modeled
 - Lots of Layout freedom
 - Trade off
 Cap Density <> Resr
DC-DC in CMOS

• Actives
Actives in CMOS

• Only CMOS switches
 – CMOS is good in switching at high frequencies
 – This is necessary since small amount of passives
 – Close Integration with control
 – Adapted waffle layout for low parasitics

• But
 – Small breakdown voltage
 • Standard devices
 – 1-1.2V
 – Fast
 • IO devices
 – 2.5V-3.3V
 – Fast but not as fast as Standard Performance Devices

• Solution:
 – Use Switch Stacking
 or
 Voltage Domain Stacking
Actives in CMOS

• **Switch Stacking**
 - Put multiple switches in series to deal with higher voltages
 - Compensate for increase of R_{switch}
 -> Increase W
 - Hard for complex topologies and large # of switches in topology
 - Works perfect for Buck or Boost
 Cfr. Implementations

• **Voltage Domain Stacking**
 - Introduce multiple voltage domains
 - Make sure each switch in single domain
 - Take care of Start Up and transient behavior

\[
\text{Vin} = 2\times \text{Vbreakdown}
\]
Control

• Monolithic Integration enables
 – High Speed Control
 – Compact integrated solution
 – Extreme Multiphase

• But impedes
 – Current Measurement
 – Digital Control
 • 100MHz-1GHz switching frequency
 • DSP does not comply with this
Intermezzo: Efficiency Enhancement Factor (EEF)

DC-DC₁

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{out}</td>
<td>1 W</td>
</tr>
<tr>
<td>k_{lin}</td>
<td>k_{SW}</td>
</tr>
<tr>
<td>η_{lin}</td>
<td>80 %</td>
</tr>
<tr>
<td>η_{SW}</td>
<td>85 %</td>
</tr>
<tr>
<td>$\Delta \eta$</td>
<td>$\eta_{SW} - \eta_{lin}$ = 5 %</td>
</tr>
</tbody>
</table>

\[
P_{in_lin} = 1.25 \text{ W} \quad P_{in_SW} = 1.18 \text{ W}
\]

\[
\Delta P_{in} = P_{in_lin} - P_{in_SW} = 0.07 \text{ W}
\]

\[
EEF = \left. \frac{\Delta P_{in}}{P_{in_lin}} \right|_{k_{lin}=k_{SW}} = 5.6 \%
\]

DC-DC₂

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{out}</td>
<td>1 W</td>
</tr>
<tr>
<td>k_{lin}</td>
<td>k_{SW}</td>
</tr>
<tr>
<td>η_{lin}</td>
<td>50 %</td>
</tr>
<tr>
<td>η_{SW}</td>
<td>55 %</td>
</tr>
<tr>
<td>$\Delta \eta$</td>
<td>$\eta_{SW} - \eta_{lin}$ = 5 %</td>
</tr>
</tbody>
</table>

\[
P_{in_lin} = 2 \text{ W} \quad P_{in_SW} = 1.82 \text{ W}
\]

\[
\Delta P_{in} = P_{in_lin} - P_{in_SW} = 0.18 \text{ W}
\]

\[
EEF = \left. \frac{\Delta P_{in}}{P_{in_lin}} \right|_{k_{lin}=k_{SW}} = 9 \%
\]

\[
EEF = 1 - \left. \frac{\eta_{lin}}{\eta_{SW}} \right|_{k_{lin}=k_{SW}}
\]
Overview

• Introduction
• DC-DC converters in CMOS
 – Passives
 – Active devices
 – Control
• Inductive
 – Converter Topologies
 – Converter Components
 – Control Systems
• Capacitive
 – Low Power
 – High Power
 – Exotic Cheap Technologies -> Organic DC-DC Converter
Inductive Converters: Control

PWM vs PFM:

Graphical representation:
- Two graphs showing waveforms labeled as U_{tri} and U_{err}.
- Φ_1 vs t on two separate scales.
- Equations:
 \[f_{SW_{-}PFM} = f_{SW_{-}PWM} \]
 \[\Delta U_{out_{-}PFM} = \Delta U_{out_{-}PWM} \]

Key points:
- Efficiency comparison $\eta_{SW_{-}PFM}$ vs $\eta_{SW_{-}PWM}$.
- Output power range $P_{out_{\min}}$ to $P_{out_{\max}}$.

Discussion:
- Comparison of Pulse Width Modulation (PWM) and Pulse Frequency Modulation (PFM) control strategies in inductive converters.
- Graphs illustrate the waveforms and their corresponding parameters, highlighting the differences and similarities in their operation.
- Formulas provide a quantitative basis for understanding the performance differences.

Key terms:
- PWM: Pulse Width Modulation
- PFM: Pulse Frequency Modulation
- U_{tri}: Triangular wave
- U_{err}: Error signal
- Φ_1: Magnetic flux
- t_{on}, t_{off}: On-time and Off-time intervals
- f: Frequency
- ΔU: Voltage change
- η: Efficiency
Inductive Converters: Control

Constant On/Off-Time (COOT):

- Higher eff. vs PWM
- No current sensing
- Mostly digital
- Fast transient response
- Fixed voltage ratio
- Load regulation dependant on the ripple
Inductive Converters: Control

Semi-Constant On/Off-Time (SCOOT):

Low Load

DC–DC$_1$ DC–DC$_2$ DC–DC$_3$ DC–DC$_4$

High Load
Inductive Converters

PWM example:

- Input voltage range: 1.6 V-2 V
- Output voltage range: 2.5 V-4 V
- Output power range: 25 mW-150 mW
- Maximum power efficiency @ U_{out} = 3.3 V: 63%
- Maximum output ripple: 200 mV
- Maximum load variation: 9 MHz
- Switching frequency: 100 MHz

Mike Wens
Published ESSCIRC 2007 – Munich
Inductive Converters

COOT example 1:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>2 V-2.6 V</td>
</tr>
<tr>
<td>Output voltage range</td>
<td>1.1 V-1.5 V</td>
</tr>
<tr>
<td>Output power range</td>
<td>0 mW-180 mW</td>
</tr>
<tr>
<td>Switching frequency range</td>
<td>30 Hz-300 MHz</td>
</tr>
<tr>
<td>Power efficiency @ $U_{in} = 2.6$ V and $U_{out} = 1.2$ V</td>
<td>52 %</td>
</tr>
<tr>
<td>Efficiency Enhancement Factor</td>
<td>12 %</td>
</tr>
<tr>
<td>Maximum output ripple @ $P_{out} = 0$ mW</td>
<td>110 mV</td>
</tr>
<tr>
<td>Minimum output ripple @ $P_{out} = 180$ mW</td>
<td>60 mV</td>
</tr>
<tr>
<td>Load regulation $\delta u_{out}/\delta i_{out}$</td>
<td>-0.51Ω</td>
</tr>
<tr>
<td>Line regulation $\delta u_{out}/\delta u_{in}$</td>
<td>-0.083</td>
</tr>
</tbody>
</table>

Mike Wens
Published ESSCIRC 2008 – Edinburgh
Inductive Converters

COOT example 2:

Input voltage range: 3 V - 4 V
Output voltage range: 1.5 V - 2.1 V
Output power range: 0 mW - 300 mW
Switching frequency range: 20 Hz - 140 MHz
Power efficiency @ $U_{in} = 3.6$ V and $U_{out} = 1.8$ V: 65%
Efficiency Enhancement Factor: 23%
Maximum output ripple @ $P_{out} = 0$ mW: 160 mV
Minimum output ripple @ $P_{out} = 300$ mW: 50 mV
Load regulation $\delta u_{out}/\delta i_{out}$: -0.3Ω
Line regulation $\delta u_{out}/\delta u_{in}$: 0.02

Mike Wens
Published CICC 2008 – San-José
Inductive Converters

SCOOT example:

- Output Power 800mW
- Efficiency Enhancement Factor +21%
- Power density 213mW/mm²

Mike Wens
Published ECCE 2009 – San-José
Overview

• Introduction
• DC-DC converters in CMOS
 – Passives
 – Active devices
 – Control
• Inductive
 – Converter Topologies
 – Converter Components
 – Control Systems
• Capacitive
 – Low Power
 – High Power
 – Exotic Cheap Technologies -> Organic DC-DC Converter
Capacitive Converters

• Use nothing but
 – Solid state switches
 – Capacitors
 • Density and Quality increase by scaling

• 2-Phase operation
 – Topology corresponds with VCR
 – VCR:1/2 -> 1 cap || VCR:4/5 -> 3 caps
Capacitive Converters

- Up-Conversion
 - The voltage Doubler design
 - Multiphase – 16 phase
 - Analog Loop
 - Ripple < 0.5%
 - Efficiency up to 82%
Capacitive Converters

- **Down Conversion**
 - Point Of Load Converter
 - 3.9V-3.05V Input
 - 1.52-1.3V Output
 - 150mW Max Pout
 - 77% Efficiency
 - Multiphase Hysteretic Control

Tom Van Breussegem
Published ESSCIRC 2010 – Sevilla
Capacitive Converters

- High Voltage Up-Conversion
 - The 10-stage High Voltage Dickson
 - 300mW
 - 70V output – 12V Input
 - High Voltage Technology
 - Efficiency 86% per stage

Tom Van Breussegem
Published ECCE 2009 – San Jose
Capacitive Converters

- Organic DC-DC
 - No CMOS but cheap
 - ‘Plastic’-technology
 - Only PMOS
 - Cap-type Converter
 - 3-stage Dickson
 - 18V Input
 - 60V Output

Hagen Marien
Published ESSCIRC 2010 – Sevilla
Overview
Conclusion

• POWER-CMOS is the logic evolution of RF-CMOS
 – Continue the development of high performing fully-integrated DC-DC converters to set a new milestone in integrated circuits

• Cost-effective Bulk CMOS is able to deliver attractive DC-DC converter specifications
 – Go multiphase
 – Go digital control

• Inductive converters: main issue is inductor quality (and ESR)
• Capacitive converters: quest for higher densities (attention to ESR)
• Use EEF as benchmark to validate performance compared to linear regulator
Acknowledgements

- **NXP**
 - Henk-Jan Bergveld
 - Patrick Smeets
 - Gerard Villar Picque
 - Maurice Meier
 - Leo Warmerdam

- **IWT**

- **Micas Power Cluster**
 - Mike Wens
 - Tom Van Breussegem
 - Hagen Marien
 - Piet Callemeyn

- **More info**