Synchronization Scheme for a High Frequency Hysteretic **Controlled DC-DC Buck converter**

Deepak Bhatia, Pengfei Li, Lin Xue, and Rizwan Bashirullah

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

250

200

₁₅₀ रे

High-Frequency Near-Load DC-DC converters

S

In order to cope with the fast current demands and stringent voltage tolerance requirements in performance products, near-load power delivery solutions based on high-frequency low voltage dcdc converters have been proposed. Integrating the voltage regulator module near or within the processing die for localized power delivery has several advantages.

RESEARCH

EGRATED CIRCUITS

- High voltage conversion ratios near the load trades voltage for current efficiency to reduce external peak currents and relax stringent impedance requirements of packages and board level traces
- High frequency converters lead to a reduction in capacitor and inductor sizes by several orders of magnitude.
- Faster load response to cope with fast localized transients.
- Localized and efficient power delivery systems naturally lend themselves to multiple voltage domains for multi-core processing architectures.

Voltage Currel 0.4 100 A 0.4 50 0 2005 2007 2009 2011 2013 Processor's voltage and current (Source: ITRS F

Digital PLL Synchronized Converter

Frequency Locked Converter

Efficiency

100ns/div

Performance Summary

Technology	130nm CMOS 8M1P
Chip area	2.85mm ²
DC-DC converter area	0.42mm ²
Bridge area, A _{BRDG}	0.03mm ²
Decoupling Capacitance	20nF
Inductance, L	8.2nH
Input voltage, V _{IN}	1.2V
Output voltage, V _{OUT}	0.4V~0.96V
Switching frequency, f	90M~240M
Maximum current, I _{MAX}	0.28A
Current density, I _{MAX} / A _{BRDG}	9.33A/mm ²
V _{IN} =1.2V, V _{OUT} =0.8V,	f=180MHz
Droop V _{OUT,P-P} @ 0.12A load step	100mV
Efficiency (peak)	80%
Efficiency @ I _{MAX}	77.5%

Acknowledgment

Funded in part by Intel Corporation

Hysteretic control techniques for dc-dc switched buck converters based on a simple feedback loop achieves a near immediate load response without stability issues. Bridge Drivers r,

Hysteretic Controlled Buck Converter

The switching frequency of the hysteretic controlled buck converter exhibits a strong dependence on voltage conversion ratio

Hysteretic

Comparator

пп

If kept unchecked, the free-running oscillations may fall in undesired power supply resonance bands created by parasitic package inductance interconnects and on-die decoupling capacitances.

[P. Li, R. Bashirullah, P. Hazucha, T.

This can potentially generate large voltage excursions in the supply network due to high impedance peaks formed by the multi-resonant networks, compromising overall system operation and device reliability. Therefore, ideally it is desirable to synchronize the converter to an on-chip clock generated from within the processor to mitigate noise injection in undesirable frequency bands.