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Introduction
�Package or chip integrated inductors will be needed to enable the efficient point of load supply of power in future miniaturised electronic devices.

�Circuit operation at increased frequencies will be needed to minimise the size of the passive components.

�Integration of inductive components requires new low loss, high frequency magnetic core materials which are compatible with CMOS processing temperatures.

�The features of such materials must include low losses, high saturation flux densities and a high anisotropy field.

�To meet these future requirements new nanocomposite magnetic materials are being investigated for their suitability to this role

Background – Passive Magnetics Development
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Methodology
�Approaches to synthesis include employing sol-gel self assembly techniques. 

�This incorporates nanometre sized ferromagnetic transition metals grains into mesoporous silica thin films.

�This approach aims to exploit the unique property of nanocrystalline magnetic materials which  exhibit a decrease in coercivity as the average grain size decreases to  

below approximately the domain wall width.

�The silica matrix will provide electrical isolation between the individual  ferromagnetic particles.

�A composite material of Ni, Fe or Co with silica is hence created. 

�Other approaches to synthesis include doping microporous silica spheres, to create both nanoparticle impregnated and nanoparticle coated silica sphere composites. 

�These doped porous silica spheres are suitable for spin coating into suitable thin films.

Doped Mesoporous Thin Film Sample Results
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� Method: CTAB was dissolved in a mixture of methanol and water. 

NH4OH was then added to the solution followed by TEOS.  

� To produce Nickel-doping: Solutions of NiCl2 in ethanol were prepared 

and added to silica spheres. 

� The uncalcined metal-doped spheres were then placed in the middle of 

a quartz tube in a furnace and heated to 450° C, under a flow of 10% 

H2 in Argon to calcine the samples. 

Doped Silica Sphere Sample Results
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�Results to date have shown that the doping of mesoporous materials with ferromagnetic elements holds potential for applications in the soft magnetic cores of inductors. 

�These materials can be easily spin coated onto substrates. 

�Increased loading of the templates will produce saturation inductions values comparable to those of bulk Ni, Fe & Co.

�These nanocomposite materials may provide a way to limit the effects of the high frequency losses which dominate in soft magnetic materials in the GHz frequency range. 
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