








>Weighing factors for the evaluation criteria: efficiency, size, cost, transient response, technology feasibility

>Each topology evaluated on the basis of the criteria

| Criteria              | Fol | Buck                         | Interleaved<br>Buck                | Class- E                                         | Inductor<br>Multiplier                                    | Single<br>Inductor<br>Dual-Output     |
|-----------------------|-----|------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| Efficiency            | 3   | 2/3<br>(integr.<br>inductor) | 3/3                                | 2/3<br>(circulating<br>currents in<br>res. tank) | 1/3 (losses<br>almost 2X that<br>of off-chip<br>inductor) | 2/3 (additional<br>switches)          |
| Size                  | 3   | 3/3                          | 2/3 (multiple<br>stages)           | 1/3 (multiple<br>conversion<br>stages)           | 3/3                                                       | 3/3                                   |
| Cost                  | 3   | 3/3                          | 2/3 (add.<br>control<br>circuitry) | 1/3 (large<br>silicon area)                      | 3/3                                                       | 3/3                                   |
| Transient<br>Response | 2   | 3/3                          | 3/3                                | 2/3 (size of<br>RF input<br>inductor)            | 1/3 (ripple cancellation)                                 | 2/3 (regulation of different outputs) |
| Feasibility           | 3   | 3/3                          | 3/3                                | 3/3                                              | 3/3                                                       | 3/3                                   |
| Total                 |     | 39/42                        | 36/42                              | 25/42                                            | 32/42                                                     | 37/42                                 |

Coarse optimisation – finding optimum frequency for highest n

Fine optimisation – including parasitics such as R<sub>dson</sub> and ESR<sub>I</sub>

|                                        | Single-I                         | nput Single<br>Converter             | Single-Input<br>Dual-Output<br>Converter (SIDO) |                                        |                                               |
|----------------------------------------|----------------------------------|--------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------------|
| lout= 100mA<br>Vout = 1V<br>Vin = 3.6V | Buck CCM<br>Air-Core<br>Inductor | Buck<br>DCM Air-<br>Core<br>Inductor | Buck<br>Magnetic<br>core<br>Inductor<br>(CCM)   | SIDO<br>(DCM,<br>Air-core<br>inductor) | Two<br>buck<br>(DCM,<br>Air-core<br>inductor) |
| L [nH]                                 | 18.92                            | 18.88                                | 199                                             | 18.96                                  | 18.88(x2)                                     |
| ESR∟[Ω]                                | 1.40                             | 1.25                                 | 1.05                                            | 1.03                                   | 1.25(x2)                                      |
| RON_PMOS [ $\Omega$ ]                  | 2.01                             | 1.82                                 | 0.48                                            | 0.86                                   | 1.82                                          |
| fs,opt [MHz]                           | 140                              | 120                                  | 10                                              | 160                                    | 140                                           |
| Ron_nmos [ $\Omega$ ]                  | 0.97                             | 0.88                                 | 0.23                                            | 0.42                                   | 0.88                                          |
| η [%]                                  | 59.35                            | 66.05                                | 72.29                                           | 56.753                                 | 66.05                                         |